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Abstract. Let b ≥ 2 be a given integer. In this paper, we show that there are only finitely
many positive integers d that are not squares, such that the Pell equation X2

− dY 2 = 1
has two positive integer solutions (X,Y ) with the property that their X-coordinates are base
b-repdigits. Recall that a base b-repdigit is a positive integer whose digits have the same value
when written in base b. We also give an upper bound on the largest such d in terms of b.

1. Introduction

Let d > 1 be a positive integer that is not a perfect square. It is well-known that the Pell
equation

X2 − dY 2 = 1 (1.1)

has infinitely many positive integer solutions (X,Y ). Furthermore, putting (X1, Y1) for the
smallest solution, all solutions are of the form (Xn, Yn) for some positive integer n, where

Xn +
√
dYn = (X1 +

√
dY1)

n.

There are many papers in the literature that treat Diophantine equations involving members
of the sequences {Xn}n≥1 and/or {Yn}n≥1, such as when are these numbers squares, or perfect
powers of fixed or variable exponents of some other positive integers, or Fibonacci numbers,
etc. (see, for example, [2], [4], [5], [8], [9]). Let b ≥ 2 be an integer. A natural number N is
called a base b-repdigit if all of its base b-digits are equal. Setting a ∈ {1, 2, . . . , b− 1} for the
common value of the repeating digit and m for the number of base b-digits of N , we have

N = a

(

bm − 1

b− 1

)

. (1.2)

When a = 1, such numbers are called base b-repunits. When b = 10, we omit mentioning the
base and say that N is a repdigit. In [6], A. Dossavi-Yovo, F. Luca, and A. Togbé proved
that when d is fixed there is, at most, one n such that Xn is a repdigit except when d = 2
(for which X1 = 3 and X3 = 99 are repdigits) or d = 3 (for which X1 = 2 and X2 = 7 are
repdigits). In this paper, we prove that the analogous result holds if we replace “repdigits”
by “base b-repdigits”, namely that there is at most one n such that Xn is a base b-repdigit
except for finitely many d, and give an explicit bound depending on b on the largest possible
exceptional d.

For every integer X ≥ 2, there is a unique square-free integer d ≥ 2 such that

X2 − 1 = dY 2 (1.3)
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for some positive integer Y . In particular, if we start with an N given as in (1.2), then N is
the X-coordinate of the solution to the Pell equation corresponding to the number d obtained
as in (1.3). Thus, the problem becomes interesting only when we ask that the Pell equation
corresponding to some d (fixed or variable) has at least two positive integer solutions whose
X-coordinates are base b-repdigits.

Here, we apply the method from [6], with an explicit estimate on the absolute value of the
largest integer solution to an elliptic equation and prove the following result.

Theorem 1.1. Let b ≥ 2 be fixed. Let d ≥ 2 be squarefree, and let (Xn, Yn) := (Xn(d), Yn(d))
be the nth positive integer solution of the Pell equation X2 − dY 2 = 1. If the Diophantine

equation

Xn = a

(

bm − 1

b− 1

)

with a ∈ {1, 2, . . . , b− 1} (1.4)

has two positive integer solutions (n, a,m), then

d ≤ exp
(

(10b)10
5
)

. (1.5)

The proof proceeds in two cases according to whether n is even or odd. If n is even, we
reduce the problem to the study of integer points on some elliptic curves of a particular form.
Here, we use an upper bound on the naive height of the largest such point due to Baker. When
n is odd, we use lower bounds for linear forms in complex and p-adic logarithms. For a number
field K, a nonzero algebraic number η ∈ K and a prime ideal π of OK, we use νπ(η) for the
exact exponent of π in the factorization in prime ideals of the principal fractional ideal ηOK

generated by η in K. When K = Q is the field of rational numbers and π is some prime number
p, then νp(η) coincides with the exponent of p in the factorization of the rational number η.

2. Case When Some n Is Even

Assume that n satisfies (1.4). Put n = 2n1. Then, using known formulas for the solutions
to Pell equations, (1.4) implies that

2X2
n1

− 1 = X2n1
= Xn = a

(

bm − 1

b− 1

)

. (2.1)

Assume first that a = b− 1. Then (2.1) gives

2X2
n1

= bm. (2.2)

We first deduce that b is even. If m = 1, then

d ≤ dY 2
n1

= X2
n1

− 1 < 2X2
n1

= b,

so d < b, which is a much better inequality than the one we aim for in general.
From now on, we assume that m > 1. Then X2

n1
= bm/2. Since m > 1, it follows that Xn1

is

even. This shows that n1 is odd, for otherwise, if n1 = 2n2 is even, thenXn1
= X2n2

= 2X2
n2
−1

is odd, a contradiction. Furthermore, the prime factors of Xn1
are exactly all the prime factors

of b. Let us show that n is then unique. Indeed, assume that there exists n′ = 2n′
1 such that

(n′, b − 1,m′) is a solution of (1.4) and n′ 6= n. Then also X2
n′

1

= bm
′

/2, so Xn1
and Xn′

1

have the same set of prime factors. Since Xn1
= Y2n1

/(2Yn1
) and Xn′

1
= Y2n′

1
/(2Yn′

1
), the

conclusion that Xn1
and Xn′

1
have the same set of prime factors is false if max{n1, n

′
1} ≥ 7

by Carmichael’s Theorem on Primitive Divisors for the sequence {Ys}s≥1 (namely that Yk

has a prime factor not dividing any Ys for any s < k provided that k ≥ 13, see [3]). Thus,
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n1, n′
1 ∈ {1, 3, 5} and one checks by hand that no two of X1, X3, X5 can have the same set

of prime factors.
Thus, n is unique and noting that m is odd (for example, because the exponent of 2 in the

left–hand side of (2.2) is odd), we get that 2(m−1)/2 divides Xn1
. It is known from the theory

of Pell equations that ν2(Xn1
) = ν2(X1). Hence, X1 is a multiple of 2(m−1)/2. Further, since

we are assuming that equation (1.4) has two solutions (n, a,m), it follows that there exists
another solution either with n even and a 6= b− 1, or with n odd.

We now move on to analyze the case in which there exists a solution with n even and
a 6= b− 1.

Put m = 3m0 + r with r ∈ {0, 1, 2}. Here, m0 is a non-negative integer. Putting x := Xn1

and y := bm0 , equation (2.1) becomes

2x2 − 1 = a

(

bry3 − 1

b− 1

)

. (2.3)

Equation (2.3) leads to
X2 = Y 3 +A0, (2.4)

where

X := 4a(b− 1)2brx, Y := 2a(b− 1)bry, and A0 := 8a2(b− 1)3b2r((b− 1)− a).

If r = 0, then A0 < 2b6 ≤ 0.25b10 (here, we used a(b − 1 − a) ≤ ((b − 1)/2)2 < b2/4, a
consequence of the AGM inequality). If r ∈ {1, 2}, then since one of b or b− 1 is even, we get
that

X ′2 = Y ′3 +A′
0, (2.5)

holds with integers (X ′, Y ′, A′
0) = (X/23, Y/22, A0/2

6) and A′
0 = A0/2

6 < 0.25b10. Note that
A0A

′
0 6= 0. Let us now recall the following result of Baker (see [1]).

Theorem 2.1. Let A0 6= 0. Then all integer solutions (X,Y ) of (2.4) satisfy

max{|X|, |Y |} < exp{(1010|A0|)10
4}.

We will apply the above theorem to equation (2.4) for r = 0 and to equation (2.5) for
r ∈ {1, 2}. Note that since |A0| < 0.25 · b10 when r = 0 and |A′

0| < 0.25b10 when r ∈ {1, 2},
we get that

(1010|A0|)10
4 ≤ (0.25 · 1010b10)104 < 0.25(10b)10

5

,

and a similar inequality holds for A0 replaced by A′
0. Theorem 2.1 applied to equations (2.4),

(2.5) tells us that in both cases

X/23 < exp(0.25(10b)10
5

).

Since X ≥ Xn1
>

√
d, we get that

d < 26 exp(0.5(10b)10
5

) < exp((10b)10
5

),

which is what we wanted. So, let us conclude this section by summarizing what we have
proved.

Lemma 2.2. Assume that there is a solution (n, a,m) to equation (1.4) with n even. Then

one of the following holds:

(i) a < b− 1 and

d < exp((10b)10
5

).

(ii) a = b− 1, m = 1, and d < b.
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(iii) a = b− 1, m > 1. Then b is even, m is odd and n = 2n1 is unique with this property,

Xn1
= bm/2 and 2(m−1)/2 divides X1.

3. On the Greatest Divisor of Repdigits

From now on, we look at the case when equation (1.4) has solutions (n, a,m) with n odd.
Say,

Xn = a

(

bm − 1

b− 1

)

.

If some other solution (n′, a′,m′) to equation (1.4) does not have n′ odd, then n′ must be even
so Lemma 2.2 applies to it. If we are in one of the instances (i) or (ii) of Lemma 2.2, then
we are done. So, let us assume that we are in instance (iii) of Lemma 2.2, so n′ is even, m

is odd, and 2(m
′−1)/2 divides X1. But, since n is odd, X1 also divides Xn. Since b is even,

(bm − 1)/(b − 1) is odd, so 2(m
′−1)/2 divides a. Hence, 2m

′−1 ≤ 2a2 ≤ b3. Since m′ ≤ 2m
′−1,

we get that m′ ≤ b3. Writing n′ = 2n′
1, and using again (iii) of Lemma 2.2, we get that

d < X2
1 ≤ X2

n′

1

= bm
′

/2 < bm
′

< bb
3

< exp(b4),

which is good enough for us.
From now on, we assume that both solutions of equation (1.4) have an odd value for n. Let

such indices be n1 6= n2. Then

Xn1
= a1

(

bm1 − 1

b− 1

)

, Xn2
= a2

(

bm2 − 1

b− 1

)

, where a1, a2 ∈ {1, 2, . . . , b− 1}.

Let n3 := gcd(n1, n2). Since n1 and n2 are odd, from known properties of solutions to the Pell
equation, we get that

Xn3
= gcd(Xn1

,Xn2
).

We put a3 := gcd(a1, a2), a
′
1 := a1/a3, a

′
2 := a2/a3. We also put m3 := gcd(m1,m2) and use

gcd(bm1 − 1, bm2 − 1) = bm3 − 1.

We then get

Xn3
= gcd(Xn1

,Xn2
)

= gcd

(

a1
bm1 − 1

b− 1
, a2

bm2 − 1

b− 1

)

= a3

(

bm3 − 1

b− 1

)

gcd

(

a′1
bm1 − 1

bm3 − 1
, a′2

bm2 − 1

bm3 − 1

)

:= a3c

(

bm3 − 1

b− 1

)

. (3.1)

The quantities inside the greatest common divisor denoted by c have the properties that a′1, a
′
2

are coprime, (bm1 − 1)/(bm3 − 1) and (bm2 − 1)/(bm3 − 1) are also coprime. Thus,

c = gcd

(

a′1,
bm2 − 1

bm3 − 1

)

gcd

(

bm1 − 1

bm3 − 1
, a′2

)

,

which implies that c ≤ a′1a
′
2 = (a1a2)/a

2
3. Hence, a3c ≤ (a1a2)/a3 ≤ (b − 1)2. Replacing a3c

by a3, we retain the conclusion that

Xn3
= a3

(

bm3 − 1

b− 1

)

, where a3 ∈ {1, 2, 3, . . . , (b− 1)2}.
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Since n1 6= n2, we may assume that n1 < n2, and then n3 < n2 and n3 is a proper divisor of
n2. Putting n := n2/n3, D := X2

n3
− 1 ≥ d, m := m3, ℓ := m2/m3 and relabeling a2 and a3

as c and a, respectively, we can restate the problem now as follows:

Problem 3.1. What can we say about D such that

X1 = a

(

bm − 1

b− 1

)

, with a ∈ {1, 2, 3, . . . , (b− 1)2}

Xn = c

(

bmℓ − 1

b− 1

)

, with c ∈ {1, 2, 3, . . . , b− 1}, (3.2)

where n > 1 is odd and ℓ, m are positive integers.

From now on, we work with the system (3.2). By abuse of notation, we continue to use d
instead of D.

4. Bounding ℓ In Terms of n

We may assume that m ≥ 100 otherwise
√
d < X1 < bm+1 ≤ b101,

so d < b202, which is better than the inequality (1.5). We put

α := X1 +
√

X2
1 − 1 = X1 +

√
dY1.

On one hand, from the first relation of (3.2), we have that

X1 =
1

2

(

α+ α−1
)

= a

(

bm − 1

b− 1

)

,

so

α = X1 +
√
dY1 > X1 =

1

2

(

α+ α−1
)

= a

(

bm − 1

b− 1

)

> bm−1. (4.1)

Hence, α > bm−1 implying

m− 1 <
logα

log b
.

One the other hand,

X1 +
√
dY1

2
=

α

2
<

1

2
(α+ α−1) = a

(

bm − 1

b− 1

)

≤ a(bm − 1) < abm < bm+2. (4.2)

Hence, α < 2bm+2 ≤ bm+3 implying

log α

log b
< m+ 3.

Thus,

m− 1 <
logα

log b
< m+ 3. (4.3)

We now exploit the second relation of (3.2). On one hand, we get that

αn > Xn = c

(

bmℓ − 1

b− 1

)

> bmℓ−1, (4.4)

therefore

mℓ− 1 < n

(

log α

log b

)

< n(m+ 3),
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where the last inequality follows from (4.3). Since m is large (m ≥ 100), we certainly get that

ℓ < 2n+ 1. (4.5)

On the other hand,
αn

2
<

1

2

(

αn + α−n
)

= Xn < bmℓ < (bα)ℓ,

where the last inequality follows from (4.1). The above inequalities lead to

αn < (2bα)ℓ < (α3/2)ℓ, (4.6)

where we used α1/2 > 2b, or α > 4b2, which follows from α > bm−1 together with m ≥ 100.
Inequality (4.6) yields

ℓ > 2n/3,

(in particular, ℓ > 1 since n ≥ 3), which with (4.5) gives

2n/3 < ℓ < 2n+ 1. (4.7)

5. Bounding m In Terms of n

Here, we use the Chebyshev polynomial Pn(X) ∈ Z[X] for which Pn(X1) = Xn. Recall that

Pn(X) =
1

2

(

(X +
√

X2 − 1)n + (X −
√

X2 − 1)n
)

.

Using the second relation of (3.2), we have by Taylor’s formula:

(c/(b− 1))bmℓ − c/(b− 1) = Xn

= Pn(X1)

= Pn ((a/(b− 1))bm − a/(b− 1)) (5.1)

= Pn(−a/(b− 1)) + P ′
n(−a/(b− 1))(a/(b − 1))bm (mod b2m)

Here, 1/(b− 1) (mod bm) is to be interpreted as the multiplicative inverse of b− 1 modulo bm,
which exists since b− 1 and b are coprime.

Case 1. Suppose that a = b− 1.

Then X1 + 1 = bm. Put Y = X + 1 and denote

Qn(Y ) := Pn(Y − 1) =
1

2

((

Y − 1 +
√

(Y − 1)2 − 1
)n

+
(

Y − 1−
√

(Y − 1)2 − 1
)n)

.

It was proved in [6] that

Qn(0) = −1 and
dQn(Y )

dY

∣

∣

∣

Y=0
= Q′

n(0) = n2.

By Taylor’s formula again, we get

Pn(X) = Qn(X + 1) = n2(X + 1)− 1 (mod (X + 1)2).

Specializing at X = X1 and a = b− 1 and using ℓ > 1 (see (4.7)), equation (5.1) becomes

−c/(b− 1) ≡ Xn (mod b2m) ≡ −1 + n2bm (mod b2m).

If c 6= b− 1, we get that bm | b− 1 − c. Since m ≥ 100 and c < b2 and c 6= b− 1, we get that
b100 ≤ |b− 1− c| < b2, a contradiction. If c = b− 1, then

−1 ≡ −1 + n2bm (mod b2m).
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The above congruence implies that
bm | n2. (5.2)

Since n is odd, b is odd also. Hence, b ≥ 3. Thus,

bm ≤ n2 therefore m ≤ 2

(

log n

log b

)

< 2 log n. (5.3)

Case 2. Suppose that a 6= b− 1.

We put

β := −a/(b− 1) +
√

(−a/(b − 1))2 − 1.

Equation (5.1) gives
bm | Pn(−a/(b− 1)) + c/(b − 1), (5.4)

where the above divisibility is to be interpreted that bm divides the numerator of the rational
number Pn(−a/(b− 1)) + c/(b − 1) written in reduced form. We observe that

Pn(−a/(b− 1)) + c/(b − 1) = (1/2)β−n(βn − γ)(βn − γ−1),

where γ := −c/(b− 1) +
√

(−c/(b− 1))2 − 1. Hence,

bm | (βn − γ)(βn − γ−1). (5.5)

It could be, however, that the right-hand side of (5.5) is zero and then divisibility relation (5.5)
is not useful. In that case, we return to (5.1), using the fact that Pn(−a/(b−1))+c/(b−1) = 0,
to infer that

bm | P ′
n(−a/(b− 1)). (5.6)

Calculating we get

P ′
n(X) =

n√
X2 − 1

(

(X +
√

X2 − 1)n − (X −
√

X2 − 1)n
)

.

Thus,

bm | n(b− 1)
√

a2 − (b− 1)2

(

βn − β−n
)

,

so
bm | n(βn − β−n). (5.7)

To continue, we need the following lemma.

Lemma 5.1. The simultaneous system of equations β−n = βn = γi for some i ∈ {±1} has no

solutions.

Proof. If βn = β−n, then β2n = 1. Hence, β is a root of unity of order dividing 2n. Since β is
rational or quadratic and n is odd, we deduce that the order of β is 1, 2, 3, 6. If the order of
β is 1, 2, we then get β = ±1. With x := −a/(b− 1), we get

x+
√

x2 − 1 = ±1,

whose solutions are x = ±1. This leads to a = ±(b− 1), which is false because 1 ≤ a < b− 1.
Hence, the order of β is 3, 6. It follows that

x+
√

x2 − 1 = ±(1/2±
√
3i/2).

This gives x = ±1/2. Hence, −a/(b − 1) = ±1/2, giving that a = (b − 1)/2, b is odd, and

β = −(1/2 ± i
√
3/2). Thus, βn = 1, showing that γ = 1. With y = −c/(b − 1), we get

y +
√

y2 − 1 = 1, giving y = 1. Thus, c = −(b− 1), a contradiction. �
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We summarize what we did so far.

Lemma 5.2.

(i) If a = b− 1, then

bm | n2.

(ii) If a 6= b− 1, then

bm | (βn − γ)(βn − γ−1). (5.8)

Further, the expression appearing in the right-hand side of divisibility relation (5.8)
either is nonzero, or it is zero in which case we additionally have

bm | n(βn − β−n), (5.9)

and the expression appearing in the right–hand side of (5.9) is nonzero.

Thus,
bm | n2Λ, (5.10)

where either Λ = 1 or

Λ =
s
∏

i=1

(δdii − ηeii ),

for some s ∈ {1, 2}, (δi, ηi) ∈ {(β, γ), (β, β)}, (di, ei) ∈ {(n, 1), (n,−1), (n, n)} for 1 ≤ i ≤ s
and furthermore Λ 6= 0. Let K = Q[β, γ] be of degree D. Note that D ≤ 4. Let p be any
prime factor of b and let π be some prime ideal in K dividing p. Then (5.3) and (5.7) tell us
that

m ≤ 2max{νπ(δdii − ηeii ) : 1 ≤ i ≤ s}+ 2Dνp(n).

Note further that both β and γ are invertible modulo any prime dividing b. Indeed this follows,
for example, because

β =
λ1

b− 1
and β−1 =

λ2

b− 1
,

where λ1,2 = −a±
√

a2 − (b− 1)2 are algebraic integers. Thus, λ1λ2 = b− 1, showing that if
π is any prime ideal such that one of νπ(λ1) or νπ(λ2) is nonzero, then π | b− 1. In particular,
π ∤ b. A similar argument applies to γ.

Now, we use a linear form in p-adic logarithm due to K. Yu [11], to get an upper bound for
m in terms of n. We recall the statement of Yu’s result.

Theorem 5.3. Let α1, . . . , αt be algebraic numbers in the field K of degree D, and b1, . . . , bt
be nonzero integers. Put

Λ = αb1
1 · · ·αbt

t − 1

and

B ≥ max{|b1|, . . . , |bt|}.
Let π be a prime ideal of K sitting above the rational prime p of ramification eπ and

Hi ≥ max{h(αi), log p} for i = 1, . . . , t,

where h(η) is the Weil height of η. If Λ 6= 0, then

νπ(Λ) ≤ 19(20
√
t+ 1D)2(t+1) · et−1

π

pfπ

(fπ log p)2
log(e5tD)H1 · · ·Ht logB. (5.11)

Here fπ is the inertia degree of π, namely that positive integer such that the finite field OK/π
has cardinality pfπ .
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In our application, we take t = 2, fix i ∈ {1, . . . , s} and put

(α1, α2) = (δi, ηi) ∈ {(β, γ), (β, β)}, (b1, b2) = (di, ei) ∈ {(n, 1), (n,−1), (n, n)},

respectively according to which Λ = αb1
1 α−b2

2 − 1 is nonzero. Thus, B = n and α1, α2 ∈ {β, γ}.
Hence, we get

νπ(Λ) ≤ 19(20
√
3 · 4)6 · eπ

pfπ

(fπ log 2)2
log(8e5)H2 log n, (5.12)

where

H ≥ max{h(β), h(γ), log p}.
Since β, γ are roots of the polynomials

(b− 1)2X2 + (2a)X + 1 and (b− 1)2X2 + (2c)X + 1,

are of degree at most 2 and both these numbers and their conjugates are in absolute values at
most

(b− 1)2/(b− 1) +
√

((b− 1)2/(b− 1))− 1 < 2b,

we conclude that

max{h(β), h(γ)} < 2 log(2b) ≤ 4 log b.

Since p ≤ b, we can take H = 4 log b. Furthermore, since eπ ≤ 4 and fπ ≤ 4, and Dνp(n) ≤
4(log n)/(log 2) < 8 log n, inequalities (5.10) and (5.12) yield

m ≤ 1.3× 1017b4(log b)2 log n+ 16 log n < 2× 1017b6 log n. (5.13)

We record this as a lemma.

Lemma 5.4. If system (3.2) has a solution, then

m < 2× 1017b6 log n.

6. Bounding n In Terms of b

The second equation of (3.2) gives

αn + α−n = 2Xn = (2c/(b − 1))bmℓ − (2c/(b − 1)).

Since

(2c/(b − 1))bmℓ − αn = α−n + (2c/(b − 1)), (6.1)

the above leads to

0 < (2c/(b − 1))bmℓα−n − 1 <
3

αn
<

1

αn−2
. (6.2)

The left side of (6.2) is nonzero by the equation (6.1). We find a lower bound on it using a
lower bound for a nonzero linear form in logarithms of Matveev [10], which we now state.

Theorem 6.1. In the notation of Theorem 5.3, assume in addition that K is real and

Hi ≥ max{Dh(δi), | log δi|, 0.16} for i = 1, . . . , t.

If Λ 6= 0, then

log |Λ| ≥ −1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)H1 · · ·Ht. (6.3)
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We take t = 3, δ1 = 2c/(b − 1), δ2 = b, δ3 = α, b1 = 1, b2 = mℓ, and b3 = −n. Since
ℓ ≤ 2n (see (4.7)), we can take B = 2mn. Now the algebraic numbers δ1, δ2, δ3 belong to
L = Q[α], a field of degree D = 2. Since h(δ1) ≤ log(2b) ≤ 2 log b, we can take H1 = 4 log b
and H2 = 2 log b . Furthermore, since α is a quadratic unit, we can take H3 = log α. Thus,
we get, by (6.2), that

(n− 2) log α ≤ − log Λ ≤ 1.4 · 306 · 34.5 · 22 · (1 + log 2)(1 + log 2mn)(8(log b)2) log α,

giving
n ≤ 1013(1 + log(2mn))(log b)2.

Inserting (5.13) into the above inequality we get

n ≤ 1013(1 + log(4× 1017b6n log n))(log b)2

< 1013(1 + log(4× 1017) + 6 log b+ 2 log n)(log b)2

< 1013 · 43 · (6 log b)(2 log n)(log b)2

< 6× 1015(log b)3 log n. (6.4)

In the above and in what follows, if x1, . . . , xk are real numbers > 2, then

x1 + · · ·+ xk ≤ x1 · · · xk.
Lemma 1 in [7] says that if T > 3 and

n

log n
< T, then n < (2T ) log T.

Taking T := 6× 1015(log b)3 in the above implication and using (6.4), we get that

n < 12× 1015(log b)3 log(6× 1015(log b)3)

< 12× 1015(log b)2(log(6× 1015) + 3 log b)

< 12× 1015(log b)3 × 37× (3 log b)

< 2× 1018(log b)4.

Inserting this back into the inequality of Lemma 5.4, we get

m ≤ 2× 1017b6 log(2× 1018(log b)4)

= 2× 1017b6(log(2× 1018) + 4 log b)

< 2× 1017b6 × 43× 4 log b

< 1020b7.

Since ℓ ≤ 2n (see (4.7)), we conclude the following result.

Lemma 6.2. Under the hypothesis of Problem 3.1, we have that

n < 1018b4, ℓ < 2× 1018b4, and m < 1020b7.

Finally, from (3.2) we have that d < X2
1 < b2m. Therefore

d < b2×1020b7 < exp(1020b10),

which with Lemma 2.2 implies the desired conclusion of Theorem 1.1.
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