
DONALD DINES WALL’S CONJECTURE

JIŘÍ KLAŠKA

Abstract. Wall’s conjecture is an interesting, not yet resolved number-theory problem con-
cerning a Fibonacci sequence. The problem took on a new significance after its connection
was discovered with Fermat’s Last Theorem. What follows is a summary of all important
discoveries and known facts related to Wall’s conjecture made over 56 years of its existence.

Dedicated to Ladislav Skula on the occasion of his 80th birthday.

1. Wall’s Question - State of Problem

The Fibonacci sequence (Fn)∞n=0 was introduced by Italian mathematician
Leonardo Fibonacci (1175 – 1250) in 1202. It is defined recursively: F0 = 0, F1 = 1, and
Fn+2 = Fn+1 + Fn for all n ≥ 0. Fix a positive integer m > 1. It is well-known that, reducing
(Fn)∞n=0 modulo m and taking least positive residues, we obtain a sequence (Fn mod m)∞n=0,
which is periodic. The first related discovery concerning this property goes back to J. L. La-
grange [34, pp. 142–147]. See also Dickson’s History [14, p. 393]. A positive integer k(m)
is called the period of Fibonacci sequence modulo m if it is the smallest positive integer for
which Fk(m) ≡ 0 (mod m) and Fk(m)+1 ≡ 1 (mod m). Various properties of k(m) have been
studied in great detail by many authors. For the basic properties of k(m), see J. C. Kluyver
[32], S. Täcklid [58], D. D. Wall [65], D. W. Robinson [49], and J. Vinson [61]. In 1928,
J. C. Kluyver [32, p. 278] discovered that, if p is a prime, p ≡ ±1 (mod 10), then k(p)|p − 1.
If p ≡ ±3 (mod 10), then k(p)|2(p + 1) but k(p) - p + 1. See also [65, p. 528]. In 1960,
D. D. Wall [65, p. 527] proved that, if p is an arbitrary prime and k(p) = k(ps) 6= k(ps+1),
then k(pt) = pt−sk(p) for any positive integers t ≥ s. Consequently, if k(p2) 6= k(p), then
k(pt) = pt−1k(p) for all t. Wall [65, p. 528] poses a question that has so far remained unan-
swered:

The most perplexing problem we have met in this study concerns the hypothesis k(p2) 6= k(p).
We have run a test on a digital computer that shows k(p2) 6= k(p) for all p up to 10, 000;
however, we cannot yet prove that k(p2) = k(p) is impossible. The question is closely related
to another one, “can a number x have the same order mod p and mod p2?”, for which rare
cases give an affirmative answer (e.g., x = 3, p = 11; x = 2, p = 1093); hence, one might
conjecture that equality may hold for some exceptional p.

Note that the equality k(m2) = k(m) may be true if m is not a prime. For example, if
m = 12, then k(122) = k(12) = 24, see [26, p. 347].

In 1997, R. E. Crandall, K. Dilcher, and C. Pomerance [12] called primes p satisfying the
equality k(p2) = k(p) the Wall-Sun-Sun primes. In the literature, these primes are also often
referred to as Fibonacci-Wieferich primes. This name was first used in 2005 by J. Knauer and
J. Richstein [33].

This paper aims to summarize all important discoveries concerning Wall’s conjecture made
in the period 1960–2016.
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2. First Partial Answer of S. E. Mamangakis

In 1961, S. E. Mamangakis [39] furnished a proof of the hypothesis k(p2) 6= k(p) under the
following assumptions: If p is an arbitrary prime and, for some n, Fn = cp with (c, p) = 1,
then k(p2) 6= k(p) [39, Theorem 1]. Next, if (c, p) = 1, t ≤ s, and Fj = cps is the first multiple
of p to occur in (Fn)∞n=0, then k(pt) = k(p) if and only if Fj−1 has the same order modulo p
and modulo pt [39, Theorem 2]. Furthermore, in [39, p. 649], Mamangakis posed the question
whether [39, Theorem 1] can be strengthened as follows: If c and p are relatively prime, then
cp occurs in (Fn)∞n=0 and k(p2) 6= k(p). The generalization of [39, Theorem 1] for sequences
(Gn)∞n=0 defined by Gn+2 = aGn+1 + bGn with G0 = 0, G1 = 1 where a, b are integers is given
by C. C. Yalavigi [72, p. 125]. Yalavigi also claims [73] that the answer to the Mamangakis
question is affirmative.

3. Rank of Appearance and the Fibonacci Quotient

In 1877, E. Lucas [38] discovered the following law of appearance of primes in the Fibonacci
sequence: If p is a prime, p ≡ ±1 (mod 10), then p|Fp−1. If p ≡ ±3 (mod 10), then p|Fp+1.
See also [14, p. 398]. Let (a/p) be the Legendere-Jacobi symbol. For p 6= 2, 5, using quadratic
reciprocity law, we see that(

5

p

)
=
(p

5

)
= 5

p−1
2 =

{
1 if p ≡ ±1 (mod 10),

−1 if p ≡ ±3 (mod 10).

Hence, for p 6= 2, we have Fp−(5/p) ≡ 0 (mod p) and Fp−(5/p)/p is a positive integer. Four differ-
ent proofs of this fact have been given by G. H. Hardy and E. M. Wright [24], D. W. Robinson
[49], J. H. Halton [22], and L. E. Somer [55]. The number Fp−(5/p)/p is called the Fibonacci
quotient.

Next, a positive integer z(m) is called the rank of appearance (or also the rank of ap-
parition) of Fibonacci sequence modulo m if it is the smallest positive integer such that
Fz(m) ≡ 0 (mod m). As has been pointed out by P. Ribenboim [48, p. 45], the term “ap-
parition” stems from a bad translation of the French “loi d’apparition”, which means “law of
appearance”, not “law of apparition”. The number z(m) is also often called Fibonacci entry
point or restricted period in the literature. Many interesting properties of z(m) are known
[22, 61, 62]. For example, if p is an odd prime and z(p2) 6= z(p), then z(pt) = pt−1z(p) for all
positive integers t. Moreover, we have z(p)|p− (5/p) for any odd prime p. See [22, p. 223] or
[61, p. 43].

The relationship of rank of appearance z(m) to the period k(m) is also well-known. D. D. Wall
[65, p. 526] showed that z(m)|k(m) and J. Vinson [61, p. 39] proved that, if p is an odd prime
and t any positive integer, then

k(pt) = 4z(pt) if z(pt) 6≡ 0 (mod 2),
k(pt) = z(pt) if z(pt) ≡ 2 (mod 4),
k(pt) = 2z(pt) if z(pt) ≡ 0 (mod 4).

Combining the above properties [23, pp. 347–348], it can be shown that the following state-
ments (i)-(v) are equivalent:

(i) k(p2) = k(p), (ii) z(p2) = z(p), (iii) Fz(p) ≡ 0 (mod p2),

(iv) Fp−(5/p) ≡ 0 (mod p2), and (v) Fp−1Fp+1 ≡ 0 (mod p2).
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Unfortunately, there is no known way to resolve Fp−(5/p) (mod p2), other than through
explicit computations. A detailed study of the Fibonacci quotient Fp−(5/p)/p has yielded the
following results:

In 1969, G. H. Andrews [2] proved the following, rather complicated, formulas for the
Fibonacci quotient: If p ≡ ±1 (mod 5), then

Fp−1
p
≡ 2(−1)

p−1
2

∑
|m|<p

m ≡ 5,7 (mod 10)

(
m+1
5

) (−1
m

)
p−m

(mod p)

and, if p ≡ ±2 (mod 5), then

Fp+1

p
≡ 2(−1)

p−1
2

∑
|m|<p

m ≡ 1,5 (mod 10)

(
m+1
5

) (−1
m

)
p−m

(mod p).

In 1982, H. C. Williams [70] showed that, if p 6= 2, 5 is an arbitrary prime and [p/5] denotes
the greatest integer not exceeding p/5, then

Fp−( 5
p
)

p
≡ 2

5

p−1−[p/5]∑
k=1

(−1)k

k
(mod p).

In 1992, Z.-H. Sun and Z.-W. Sun [56, p. 381] proved for any p 6= 2, 5 the following simple
and beautiful formula

Fp−( 5
p
)

p
≡ −2

p−1∑
k=1

k≡2p (mod 5)

1

k
≡ 2

p−1∑
k=1
5|p+k

1

k
(mod p).

In 1996, A. Granville and Z.-W. Sun also discovered an interesting connection of Fibonacci
quotient with Bernoulli numbers. See [19, p. 135].

4. Ward’s Last Theorem

In 1640, P. de Fermat stated that, if p is any prime and a is any integer not divisible by p,
then ap − 1 is divisible by p. See [14, p. 59]. The quotient qp(a) = (ap−1 − 1)/p is called the
Fermat quotient of p with base a. Let Φn(x) = x+x2/2+ · · ·+xn/n, and let p be an arbitrary
odd prime greater then 5. Then,

Fz(p) ≡ 0 (mod p2) if and only if Φ p−1
2

(
5

9

)
≡ 2qp

(
3

2

)
(mod p).

This statement is often called Ward’s Last Theorem in honour of Morgan Ward (1901-1963). It
was posed by the late brilliant mathematician in [66]. For a proof, see the paper by L. Carlitz
[9] and, for an alternative proof, consult the papers by J. H. Halton [23] and J. E. Desmond
[13]. Since Fz(p) ≡ 0 (mod p2) if and only if k(p2) = k(p), Ward yields a new equivalent
condition to Wall’s question.

5. Further Discoveries Related to Wall’s Conjecture

In 1975, A. J. Vince [64] stated the following problem. Prove or disprove: if m2|Fn, then
m|n. In 1976, D. E. Penney and C. Pomerance [44] showed that Vince’s statement is the
equivalent to Wall’s conjecture that k(p2) 6= k(p) for all primes p.
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In 1998, S. Jakubec [27, p. 376] discovered the following connection of Wall’s conjecture
to cyclotomic fields: Let q be an odd prime and let l, p be primes such that p = 2l + 1,
l ≡ 3 (mod 4) and p ≡ −5 (mod q). Suppose that the order of q modulo l is (l − 1)/2. If
q divides the class number of the real cyclotomic field Q(ζp + ζ−1p ), then q is a Wall-Sun-Sun
prime.

In 1999, Hua–Chieh Li [35, p. 83] showed that, if p is an odd prime satisfying (5/p) = 1 and
α is a solution to x2−x−1 ≡ 0 (mod p), then k(p2) = k(p) if and only if 2αp+1−αp−α2−1 ≡
0 (mod p2). Next, if p > 2, (5/p) = −1 and α is a solution x2 − x− 1 ≡ 0 (mod p) in the ring

Z[(1 +
√

5)/2] modulo p, then k(p2) = k(p) if and only if 2αp2+1 − αp2 − α2 − 1 ≡ 0 (mod p2).
In 2006, V. Andrejič [1, p. 42] proved that, if (Ln)∞n=0 is the Lucas sequence defined by

L0 = 2, L1 = 1, and Ln+2 = Ln+1 + Ln for all n ≥ 0, then p is a Wall-Sun-Sun prime if and
only if Lp ≡ 1 (mod p2). Next, by [1],

k(p2) = k(p) if and only if

(p−1)/2∑
k=1

5k − 1

k
≡ 0 (mod p).

Furthermore, it is well known [49] that the Fibonacci numbers can be computed by taking
powers of a matrix. Namely, if

F =

[
F0 F1

F1 F2

]
=

[
0 1
1 1

]
, then Fn =

[
Fn−1 Fn

Fn Fn+1

]
.

Let Qp = (F k(p)− I)/p, where I is a 2× 2 identity matrix. In 2008, J. Klaška [28] proved that
k(p2) = k(p) if and only if Qp ≡ 0 (mod p2). Moreover, if p 6= 5, then Qp ≡ 0 (mod p2) if and
only if det Qp ≡ 0 (mod p2). Let Kp be the splitting field of f(x) = x2−x− 1 over the field of
p-adic numbers Qp and let α, β be the roots of f(x) in Kp. Denote by Op the ring of integers of
Kp and, for a unit ε ∈ Op, denote by ordpt(ε), t ∈ N the least positive rational integer h such

that εh ≡ 1 (mod pt). If p 6= 5, then, by [28, p. 1244], k(pt) = lcm(ordpt(α), ordpt(β)) for any

t ∈ N and we have k(p2) 6= k(p) if and only if ordp2(α) ≡ 0 (mod p) and ordp2(β) ≡ 0 (mod p).
Furthermore, by [28, p. 1245] we have: if p 6= 5, u ∈ Op and f(u) ≡ 0 (mod p), then
k(p2) = k(p) if and only if u2q − uq − 1 ≡ 0 (mod p2).

Some further results related to Wall’s conjecture can be found in [21, p. 208], [25, p. 117],
[36, p. 348], and [50, p. 82].

6. Wall’s Conjecture and Fibonacci Perfect Power Problem

The following interesting statement is closely related to Wall’s question: The only perfect
powers in the Fibonacci sequence are F0 = 0, F1 = F2 = 1, F6 = 8 and, F12 = 144. By
definition, Fn is a perfect power if there exist integers x, q such that q > 1 and Fn = xq.
The first attempt to prove the theorem was made by F. Buchanan [6] in 1964. Unfortunately,
the proof presented in [6] was incorrect being later retracted by the author [7]. A mistake in
Buchanan’s proof consists in the false assumption that a formula z(pt) = pt−1z(p) holds for
an arbitrary prime p. We have z(pt) = pt−1z(p) only for p satisfying z(p2) 6= z(p). Hence,
if k(p2) 6= k(p) for all primes p, then the only perfect powers in the Fibonacci sequence are
0, 1, 8 and, 144. A complete solution of Fn = xq was given for q = 2 by J. H. E. Cohn [10, 11]
and by O. Wyler [71], and for q = 3 by H. London and R. Finkelstein [37]. The solution for
q = 5 was found by A. Pethö [45] and for q = 5, 7, 11, 13, 17 by McLaughlin [41]. In general,
the statement that 0, 1, 8 and, 144 are the only positive perfect powers in the Fibonacci
sequence was proved in 2006 by Y. Bugeaud, M. Mignotte, and S. Siksek [8]. An extensive list
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of references concerning the Fibonacci perfect powers can be found in [1, 8, 45] and, for short
historical surveys, see [8, pp. 973–975] or [1, pp. 38–39].

7. Wall’s Conjecture and Fermat’s Last Theorem

Around 1637, Pierre de Fermat (1601–1665) stated that the Diophantine equation xn+yn =
zn has no integer solution when n > 2 and x, y, z 6= 0. This proposition is known as Fermat’s
Last Theorem. In a marginal note, Fermat claimed to have discovered a truly remarkable
proof. However, all the greatest mathematicians tried to find such proof without success
over 350 years. The first accepted proof of Fermat’s Last Theorem was published in 1995
by A. Wiles and R. Taylor [59, 68]. An extensive history of this problem can be found, for
example, in [47]. It is well known that a solution of Fermat’s problem can be reduced to the
case of n = p being an odd prime. Traditionally, two cases are then considered: case one if
p - xyz and case two otherwise.

A central role in the study of the first case of Fermat’s Last Theorem is played by Fermat
quotients 1 qp(a) and the congruence qp(a) ≡ 0 (mod p), which can be written equivalently as
ap−1 ≡ 1 (mod p2). In 1909, A. Wieferich [67] proved that, if there exists a solution of Fermat’s
equation xp+yp = zp such that p - xyz where p is an odd prime, then ap−1 ≡ 1 (mod p2) holds
for a = 2. This implication is known as the Wieferich criterion and the primes p satisfying
2p−1 ≡ 1 (mod p2) are called Wieferich primes. At present, only two Wieferich primes are
known: 1093 was found by W. Meissner in 1913 and 3511 was found by N. Beeger in 1922. The
Wieferich’s result has been extended by many authors. See, for example, [18, 42, 57, 60]. The
last result due to J. Suzuki [57] stated that, if there exists a prime p satisfying xp + yp = zp

where p - xyz, then ap−1 ≡ 1 (mod p2) for any prime a ≤ 113.
The two following results connecting the first case of Fermat’s Last Theorem with Wall’s

conjecture are known. In 1972, G. Brückner [5] stated that, if k(p2) 6= k(p) for all primes p,
then the Diophantine equation αp+βp+γp = 0 has no solution in integers α, β, γ of Q(

√
5) such

that (γ, p) = 1 and α = a1+a2
√

5, β = b1+b2
√

5 satisfy the condition a1b2−a2b1 6≡ 0 (mod p).
Brückner also stated that γp may be replaced by εγp, where ε is a unit in Q(

√
5).

In 1992, Z.-H. Sun and Z.-W. Sun [56] proved that, if k(p2) 6= k(p) for all primes p, then
xp + yp = zp has no integer solution with p - xyz. Hence, the affirmative answer to Wall’s
question implies the first case of Fermat’s Last Theorem.

8. A Computer Search for Fibonacci-Wieferich Primes

In this section, we recall the most important historical milestones in a computer search
for Fibonacci-Wieferich primes. First, D. D. Wall [65] showed that k(p2) 6= k(p) for any
prime p < 10.000. In [23], J. H. Halton claims that k(p2) 6= k(p) has been verified thanks
to Wunderlich’s computations for p ≤ 28.837. D. E. Penney and C. Pomerance [44] inform
us that k(p2) 6= k(p) for p ≤ 177.409. In [16], L. A. G. Dresel verified that k(p2) 6= k(p) for
p < 106. According to H. C. Williams [70, 69], k(p) 6= k(p2) for every prime p < 109. By
P. L. Montgomery [43], there is no Fibonacci-Wieferich prime less then 232. From a search
conducted by R. J. McIntosh [12, p. 447], we learn that there are no Fibonacci-Wieferich
primes p < 2 × 1012. An extensive computer search by A.-S. Elsenhans and J. Jahnel [17]
leads to an extension of the bound up to 1014. According to a report by R. J. McIntosh and
E. L. Roettger [40], k(p2) 6= k(p) for p < 2× 1014. F. G. Dorais and D. Klyve [15] proved that
there exists no Fibonacci-Wieferich prime p < 9.7× 1014.

1Note that the connection of the first case of Fermat’s Last Theorem with the Fermat quotients has been
extensively studied by Ladislav Skula, a Czechoslovak mathematician. See [51, 53, 54, 52].
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Next, in December 2011, a PrimeGrid project [46] was started searching for Fibonacci-
Wieferich primes. In 2011-2016, PrimeGrid extended the search limit to 1.9 × 1017 without
finding any such primes. Finally, note that some computational results have been verified
retrospectively. For example in [4, p. 228] for p < 100.000 and in [3, p. 62] for p < 108. Our
short historical survey is summarized in Table 1.

Year Author Search limit

1960 D. D. Wall p < 10, 000

1967 J. H. Halton p ≤ 28, 837

1976 D. E. Penny, C. Pomerance p ≤ 177, 409

1977 L. A. G. Dresel p < 106

1982 H. C. Williams p < 109

1993 P. L. Montgomery p < 4, 294, 967, 296 = 232

1997 R. J. McIntosh p < 2× 1012

2004 A.– S. Elsenhans, J. Jahnel p < 1014

2007 R. J. McIntosh, E. L. Roettger p < 2× 1014

2011 F. G. Dorais, D. Klyve p < 9.7× 1014

2012 PrimeGrid p < 6× 1015

2014 PrimeGrid p < 2.8× 1016

2015 PrimeGrid p < 1.2× 1017

2016 PrimeGrid p < 1.9× 1017

Table 1

The computer search for Fibonacci-Wieferich primes is also closely related to the following
statistical considerations. By the heuristic argument [12, pp. 446–447] and [40, p. 2091], the
number N of Fibonacci-Wieferich primes in an interval [x, y] is expected to be

N =
∑

x≤p≤y

1

p
≈

y∑
n=x

1

n lnn
≈
∫ y

x

dt

t ln t
= ln(ln y)− ln(lnx).

On the other hand, using the arguments presented in [30, p. 23], we have

N =
∑

x≤p≤y

1

q
, where

{
q = p2, if p ≡ 3, 7 (mod 10),

q = p, if p ≡ 1, 9 (mod 10).

The mild conflict of these two heuristics is reconciled by G. Grell and W. Peng [20].

9. Some Analogical Problems

Analogies to the equality k(p2) = k(p) have also been examined for other linear recurrence
sequences. Let K(m) be the period of (Gn mod m)∞n=0 where G0 = 0, G1 = 1, and Gn+2 =
aGn+1+bGn for all n ≥ 0, i.e. K(m) is the least positive integer satisfying [GK(m), GK(m)+1] ≡
[0, 1]( mod m). For example, if [a, b] = [2, 1], we get the Pell sequence. In this case, all primes
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p ≤ 108 for which K(p2) = K(p) are 13; 31; and 1, 546, 463. See [69, p. 86]. In general,
K(pt) = K(p) can also be true for t > 2. If [a, b] = [5, 1], then K(33) = K(32) = K(3) = 8.
Consult [63, p. 305].

Similarly, let us denote by h(m) the period of (Tn mod m)∞n=0 where T0 = T1 = 0,
T2 = 1, and Tn+3 = Tn+2 + Tn+1 + Tn, i.e. h(m) is the least positive integer satisfying
[Th(m), Th(m)+1, Th(m)+2] ≡ [0, 0, 1]( mod m). A prime p is called Tribonacci-Wieferich [31] if

h(p2) = h(p). By J. Klaška [29, p. 19], no Tribonacci-Wieferich prime exists below 1011. Up
to the present, no instance of h(p2) = h(p) has been found and it is an open question whether
h(p2) = h(p) never appears. Finally, some results for Tetranacci-Wieferich primes are also
known [31, p. 296].

10. Concluding Remarks

The long failure to find Wall-Sun-Sun primes supports the original conjecture of Donald
Dines Wall, namely, that k(p2) 6= k(p) holds for all primes p. Therefore, the attention of the
mathematicians should focus on finding a proof of this conjecture rather than on searching for
a counterexample. However, it is evident that, until the proof of Wall’s conjecture is found,
the computer search for Wall-Sun-Sun primes will continue.
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