CONDITIONAL (STRONG) DIVISIBILITY SEQUENCES

MURAT SAHIN AND ELIF TAN

Abstract

A conditional recurrence sequence $\left\{q_{n}\right\}$ is one in which the recurrence satisfied by q_{n} depends on the residue of n modulo some integer $r \geq 2$. If a conditional sequence $\left\{q_{n}\right\}$ is a (strong) divisibility sequence then we define it as a conditional (strong) divisibility sequence. In this paper, we find some families of the conditional (strong) divisibility sequences for $r=2$. These sequences are a generalization of the best known (strong) divisibility sequences in the literature, such as the Fibonacci sequence, the Lucas sequence, the Lehmer sequence, etc. Also, they contain some new fourth-order linear divisibility sequences which are different from the ones in the literature. An open problem is to determine the conditional (strong) divisibility sequences for $r>2$.

1. Introduction

A sequence of rational integers $\left\{a_{n}\right\}$ is said to be a divisibility sequence ($D S$) if $m \mid n$ whenever $a_{m} \mid a_{n}$ and it is said to be a strong divisibility sequence (SDS) if $\operatorname{gcd}\left(a_{m}, a_{n}\right)=$ $a_{\operatorname{gcd}(m, n)}$. These sequences are of particular interest because of their remarkable factorization properties and usage in applications, such as factorization problem, primality testing, etc. The best known examples are the Fibonacci sequence, the Lucas sequence, the Lehmer sequence, Vandermonde sequences, resultant sequences and their divisors, elliptic divisibility sequences, etc.

Kimberling [5] asked which recurrent sequences $\left\{a_{n}\right\}$ are divisibility or strong divisibility sequences. Lucas studied second order divisibility sequences of integers in [7]. Lehmer extended it to some fourth-order linear divisibility sequences in [6]. Williams and Guy found some other fourth-order linear divisibility sequences in [12].

Let $\left\{a_{i, j}\right\}$ be rational numbers for $0 \leqslant i \leqslant r-1$ and $1 \leqslant j \leqslant s$, and define a sequence $\left\{q_{n}\right\}$ with given initial terms $q_{i}, 0 \leq i \leq s-1$, and for $n \geqslant s$

$$
q_{n}= \begin{cases}a_{0,1} q_{n-1}+a_{0,2} q_{n-2}+\cdots+a_{0, s} q_{n-s}, & \text { if } n \equiv 0(\bmod r) ; \tag{1.1}\\ a_{1,1} q_{n-1}+a_{1,2} q_{n-2}+\cdots+a_{1, s} q_{n-s}, & \text { if } n \equiv 1(\bmod r) ; \\ \vdots & \vdots \\ a_{r-1,1} q_{n-1}+a_{r-1,2} q_{n-2}+\cdots+a_{r-1, s} q_{n-s}, & \text { if } n \equiv r-1(\bmod r) .\end{cases}
$$

Daniel et al. called such a sequence a "general conditional recurrence sequence" in [10]. In this paper, we ask Kimberling's question for conditional recurrence sequences, that is, we ask which conditional sequence $\left\{q_{n}\right\}$ are (strong) divisibility sequences. We consider the case of $(r, s)=(2,2)$ and find some families of conditional (strong) divisibility sequences. If we take $(r, s)=(2,2)$ in (1.1) then we obtain the sequence $\left\{f_{n}\right\}$ with initial conditions $f_{0}=0, f_{1}=1$ and for $n \geq 2$,

$$
f_{n}= \begin{cases}a_{1} f_{n-1}+b_{1} f_{n-2}, & \text { if } n \text { is even; } \tag{1.2}\\ a_{2} f_{n-1}+b_{2} f_{n-2}, & \text { if } n \text { is odd. }\end{cases}
$$

From now on, we assume that a_{1}, a_{2}, b_{1}, and b_{2} are nonzero integers. We will obtain some families of the conditional (strong) divisibility from the sequence $\left\{f_{n}\right\}$.

CONDITIONAL (STRONG) DIVISIBILITY SEQUENCES

For $(r, s)=(2,2)$, the (strong) conditional divisibility sequences obtained from $\left\{f_{n}\right\}$ can be considered as a generalization of the second order (strong) divisibility sequences. Also, they contain some new families of fourth order linear (strong) divisibility sequences which are different from ones in [6] and [12]. The following are some special conditional (strong) divisibility examples obtained from the sequence $\left\{f_{n}\right\}$.
(1) If $a_{1}=b_{1}=a_{2}=b_{2}=1$, we obtain the Fibonacci sequence [$A 117567$] which is $S D S$.
(2) If $a_{1}=a_{2}=k$ and $b_{1}=b_{2}=1$, we obtain the k-generalized Fibonacci sequence which is $S D S$.
(3) If $a_{1}=a_{2}=1$ and $b_{1}=b_{2}=2$, we obtain the Jacobsthal sequence which is $S D S$.
(4) If $a_{1}=a_{2}=2$ and $b_{1}=b_{2}=1$, we obtain the Pell sequence which is $S D S$.
(5) If $b_{1}=b_{2}=1$ and a_{1}, a_{2} are non-zero numbers, we obtain a $S D S$ sequence which is studied in [4].
In addition, Lehmer numbers are the fourth order strong divisibility sequence and they are also a special case of conditional strong divisibility sequences obtained from $\left\{f_{n}\right\}$. In the following table we give some more $S D S$ examples, which appear in Sloane's On-Line Encyclopedia of Integer Sequences, for $(r, s)=(2,2)$.

$\left(a_{1}, b_{1}, a_{2}, b_{2}\right)$	Sequence	Name
$(1,1,2,1)$	$[A 002530]$	Lehmer numbers with parameters $R=2$ and $Q=-1$
Even indices of $(1,2,3,4)$	$[A 023001]$	$\frac{8^{n}-1}{7}$ (see Example 2.8)
$(2,1,0,1)$	$[A 124625]$	Even numbers sandwiched between 1's
$(2,-1,0,-1)$	$[A 009531]$	Expansion of the e.g.f. $\sin (x)(1+x)$
$(2,3,1,3)$	$[A 174988]$	
$(1,3,2,3)$	$[A 002536]$	(see Example 2.15)

In Section 2, we study the sequence $\left\{f_{n}\right\}$ and determine when $\left\{f_{n}\right\}$ is a divisibility or strong divisibility sequence so that we get some families of divisibility sequences and strong divisibility sequences from the sequence $\left\{f_{n}\right\}$. In Section 3, we define the sequence $\left\{l_{n}\right\}$ by changing the initial terms in $\left\{f_{n}\right\}$ and we similarly obtain some other families of divisibility and strong divisibility sequences from the conditional sequence $\left\{l_{n}\right\}$.

2. The Fibonacci-Like Conditional Sequence $\left\{f_{n}\right\}$

We can get the following results for the sequence $\left\{f_{n}\right\}$ by taking $r=2$ in Theorems 5,6 , and 9 in [9].

For $n \geq 4$,

$$
\begin{equation*}
f_{n}=A f_{n-2}-B f_{n-4} \tag{2.1}
\end{equation*}
$$

where $A:=a_{1} a_{2}+b_{1}+b_{2}$ and $B:=b_{1} b_{2}$.
The generating function of the sequence $\left\{f_{n}\right\}$ is

$$
\begin{equation*}
F(x)=\frac{x+a_{1} x^{2}-b_{1} x^{3}}{1-A x^{2}+B x^{4}} . \tag{2.2}
\end{equation*}
$$

By using (2.2), the Binet's formulas for the sequence $\left\{f_{n}\right\}$ are given:

$$
\begin{align*}
f_{2 m} & =a_{1} \frac{\alpha^{m}-\beta^{m}}{\alpha-\beta} \tag{2.3}\\
f_{2 m+1} & =\left(a_{1} a_{2}+b_{2}\right) \frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}-\left(b_{1} b_{2}\right) \frac{\alpha^{m-1}-\beta^{m-1}}{\alpha-\beta} \tag{2.4}
\end{align*}
$$

THE FIBONACCI QUARTERLY

where $\alpha=\frac{A+\sqrt{A^{2}-4 B}}{2}$ and $\beta=\frac{A-\sqrt{A^{2}-4 B}}{2}$ that is, α and β are the roots of the polynomial $p(z)=z^{2}-A z+B$.

We will get some divisibility properties of the conditional sequences $\left\{f_{n}\right\}$ and we find some conditional (strong) divisiblity sequences by using these properties. We will study two cases for the sequences $\left\{f_{n}\right\}$. In the first case, we only consider the even indices of the sequences $\left\{f_{n}\right\}$ and in the second case, we take $b_{1}=b_{2}$ in $\left\{f_{n}\right\}$.
2.1. The case of even indices of $\left\{f_{n}\right\}$. Along this subsection, we consider even number indices of $\left\{f_{n}\right\}$ unless otherwise stated.

Corollary 2.1. If m is a positive even integer, then $a_{1} \neq 0$ always divides f_{m}.
Proof. Since f_{m} and $a_{1} \neq 0$ are integers, we can clearly get the result by using (2.3).
Lemma 2.2. The terms of the sequence $\left\{f_{n}\right\}$ satisfy

$$
a_{1} f_{m+n}=f_{m} f_{n+2}-b_{1} b_{2} f_{n} f_{m-2}
$$

for any positive even integers m and n.
Proof. Since m and n are even integers, we have $m=2 k$ and $n=2 s$ for some integer k and s. By using the Binet-like formula for even indices of the sequence $\left\{f_{n}\right\}$ and the identity $\alpha \beta=b_{1} b_{2}$, we get

$$
\begin{aligned}
f_{m} f_{n+1}-b_{1} b_{2} f_{n} f_{m-1}= & a_{1}^{2} \frac{\left(\alpha^{k}-\beta^{k}\right)\left(\alpha^{s+1}-\beta^{s+1}\right)}{(\alpha-\beta)^{2}}-b_{1} b_{2} a_{1}^{2} \frac{\left(\alpha^{s}-\beta^{s}\right)\left(\alpha^{k-1}-\beta^{k-1}\right)}{(\alpha-\beta)^{2}} \\
= & a_{1}^{2} \frac{\alpha^{k+s+1}-\alpha^{s+1} \beta^{k}-\alpha^{s} \beta^{s+1}+\beta^{k+s+1}}{(\alpha-\beta)^{2}} \\
& -a_{1}^{2} \frac{\alpha \beta\left(\alpha^{k+s-1}-\alpha^{k-1} \beta^{s}-\alpha^{s} \beta^{k-1}+\beta^{k+s-1}\right)}{(\alpha-\beta)^{2}} \\
= & a_{1}^{2} \frac{\alpha^{k+s+1}-\alpha \beta^{k+s}-\alpha^{k+s} \beta+\beta^{k+s+1}}{(\alpha-\beta)^{2}} \\
= & a_{1}^{2} \frac{\alpha^{k+s}-\beta^{k+s}}{\alpha-\beta}=a_{1} f_{m+n} .
\end{aligned}
$$

Theorem 2.3. If m and n are even positive integers, then we have

$$
m\left|n \Rightarrow f_{m}\right| f_{n}
$$

Proof. If m and n is even then $m=2 a$ and $n=2 b$ for an integer a, b. If m divides n then we can write $2 b=2 a k$ for some positive integer k. We shall use induction on k to prove the theorem. First we need to show that the statement of the theorem holds for $k=1$. If $k=1$ then, $2 b=2 a$ so that $f_{m} \mid f_{n}$. Assume that it holds for positive integer k, that is we have f_{m} $\mid f_{m k}$. By Lemma 2.2, we get

$$
f_{2 a(k+1)}=f_{2 a k+2 a}=f_{2 a k} \frac{f_{2(a+1)}}{a_{1}}-b_{1} b_{2} f_{2 a} \frac{f_{2(a k-1)}}{a_{1}}
$$

Here $\frac{f_{2(a k-1)}}{a_{1}}$ and $\frac{f_{2(a+1)}}{a_{1}}$ are integers due to Corollary 2.1. So, we get the desired result

$$
f_{m} \mid f_{m(k+1)}
$$

by using $f_{m} \mid f_{n}$ and $f_{m} \mid f_{m k}$ in the above equation.

CONDITIONAL (STRONG) DIVISIBILITY SEQUENCES

By Theorem 2.3, the even indices of a conditional sequence $\left\{f_{n}\right\}$ is a divisibility sequence (DS).

Theorem 2.4. If m is even, then

$$
\operatorname{gcd}\left(f_{m+2}, f_{m}\right) \mid a_{1} \lambda^{\omega}
$$

for some non-negative integer ω, where $\lambda=\operatorname{gcd}(A, B)$.
Proof. Let m be an even integer such that $m=2 n$. We have $f_{0}=0, f_{2}=a_{1}$ and

$$
\begin{equation*}
f_{2(n+1)}=A f_{2 n}-B f_{2(n-1)} \tag{2.5}
\end{equation*}
$$

for positive integer n by (2.1). Assume that p is a prime and a common divisor of $f_{2(n+1)}$ and $f_{2 n}$ such that $\operatorname{gcd}(p, \lambda)=1$. We prove the result by breaking the proof into two cases.
Case 1. $\operatorname{gcd}(p, B)=1$. We have $p \mid f_{2(n+1)}$ and $p \mid f_{2 n}$, so we get $p \mid B f_{2(n-1)}$ by (2.5). Also, since p and B are relatively prime, we get $p \mid f_{2(n-1)}$. We have

$$
\begin{equation*}
f_{2 n}=A f_{2(n-1)}-B f_{2(n-2)} \tag{2.6}
\end{equation*}
$$

by (2.1). Since $p \mid f_{2 n}$ and $p \mid f_{2(n-1)}$ we get $p \mid B f_{2(n-2)}$ by (2.6). Similarly, we get $p \mid f_{2(n-2)}$ by $\operatorname{gcd}(p, B)=1$. If we continue in this way then we ultimately get $p \mid f_{2}=a_{1}$. Also we have $a_{1} \mid f_{2 n}$ for a non-negative integer n by Corollary 2.1. As a result $\operatorname{gcd}\left(f_{m+2}, f_{m}\right)=a_{1} \lambda^{\omega}$ for some non-negative integer ω.
Case 2. $\operatorname{gcd}(p, B) \neq 1$. In this case, we have $p \mid B$, so $p \mid B f_{2(n-2)}$. Since $p \mid f_{2 n}$ and $p \mid B f_{2(n-2)}$ we get $p \mid A f_{2(n-1)}$ by (2.6). Since $\operatorname{gcd}(p, \lambda)=1$ and $\operatorname{gcd}(p, B) \neq 1$ we obtain $\operatorname{gcd}(p, A)=1$. Now we have $p \mid A f_{2(n-1)}$ and $\operatorname{gcd}(p, A)=1$, so we get $p \mid f_{2(n-1)}$. Similarly, we have

$$
f_{2(n-1)}=A f_{2(n-1)}-B f_{2(n-3)}
$$

by (2.1). We have $p \mid f_{2(n-1)}$ and $p \mid B f_{2(n-3)}$ (since $\left.p \mid B\right)$ so $p \mid A f_{2(n-2)}$. Since gcd $(p, A)=1$ we get $p \mid f_{2(n-2)}$. If we continue in this way, we get $p \mid f_{2}=a_{1}$. As a result, we get the desired result.

Corollary 2.5. If $a_{1}=1$ and $\operatorname{gcd}(A, B)=1$, then

$$
\operatorname{gcd}\left(f_{m}, f_{m+2}\right)=1
$$

for positive even integer m.
Proof. The desired result is obtained by taking $a_{1}=1$ and $\operatorname{gcd}(A, B)=1$ in Theorem 2.4
The following theorem is trivial by (2.3), it follows from the paper of Carmichael in [3]. But we will provide a proof of it.

Theorem 2.6. If $a_{1}=1$ and $\operatorname{gcd}(A, B)=1$ then

$$
\operatorname{gcd}\left(f_{m}, f_{n}\right)=f_{\operatorname{gcd}(m, n)}
$$

for positive even integers m and n.
Proof. Let $d_{1}=\operatorname{gcd}(m, n)$ and $d_{2}=\operatorname{gcd}\left(f_{m}, f_{n}\right)$ for positive even integers m and n. Since $d_{1} \mid m$ and $d_{1} \mid n$, we get $f_{d_{1}} \mid f_{m}$ and $f_{d_{1}} \mid f_{n}$ by the fact that $\left\{f_{n}\right\}$ is a divisibility sequence for even indices. So, we get

$$
\begin{equation*}
f_{d_{1}} \mid d_{2} \tag{2.7}
\end{equation*}
$$

by the definition of greatest common divisor. Since $d_{1}=\operatorname{gcd}(m, n)$, there exists integers a and b such that $d_{1}=a m+b n$. Since d_{1}, m, and n are positive integers, we must have either $a \leq 0$ or $b \leq 0$. Assume without loss of generality $a \leq 0$. There exists a $k \geq 0$ such that

THE FIBONACCI QUARTERLY

$a=-k$. So we can rearrange the above equality as $b n=d_{1}+k m$. Now if we use Lemma 2.2 by taking $b n=d_{1}+k m$ and $a_{1}=1$, we get

$$
\begin{equation*}
f_{d_{1}+k m}=f_{d_{1}} f_{k m+2}-b_{1} b_{2} f_{k m} f_{d_{1}-2} . \tag{2.8}
\end{equation*}
$$

Since $d_{2}=\operatorname{gcd}\left(f_{m}, f_{n}\right)$, we have $d_{2} \mid f_{m}$ and $d_{2} \mid f_{n}$. Also, since even indices of $\left\{f_{n}\right\}$ are a divisibility sequence, we have $f_{m} \mid f_{m k}$ and $f_{n} \mid f_{b n}$. Thus, we obtain

$$
d_{2} \mid f_{m}: \text { and }: f_{m}\left|f_{k m} \Rightarrow d_{2}\right| f_{k m}
$$

and

$$
d_{2} \mid f_{n}: \text { and }: f_{n}\left|f_{b n} \Rightarrow d_{2}\right| f_{b n} .
$$

Now, we have $d_{2}\left|f_{k m}, d_{2}\right| f_{b n}$ and $\operatorname{gcd}(A, B)=1$, so we get

$$
\begin{equation*}
d_{2} \mid f_{d_{1}} \tag{2.9}
\end{equation*}
$$

by using Corollary 2.5 and equation 2.8 . By using (2.7) and (2.9), we get the desired result

$$
d_{2}=f_{d_{1}} \Rightarrow \operatorname{gcd}\left(f_{m}, f_{n}\right)=f_{\operatorname{gcd}(m, n)}
$$

Recall that the generalized Fibonacci sequence $\left\{U_{n}\right\}=\left\{U_{n}(P, Q)\right\}$ is defined by parameters $P, Q \in \mathbb{Z}$ with initial conditions $U_{0}=0, U_{1}=1$, and for $n \geq 2$

$$
U_{n}=U_{n}(P, Q)=P U_{n-1}-Q U_{n-2} .
$$

Note that as is well-known, if $\operatorname{gcd}(P, Q)=1$, then the sequence $\left\{U_{n}\right\}$ is strong divisibility sequences [7]. Indeed,

$$
f_{2 n}=a_{1} U_{n}(A, B),
$$

so $\left\{U_{n}\right\}$ is a special case of the sequence f_{n}.
Corollary 2.7. If $\operatorname{gcd}(A, B)=1$, then the even indices of conditional sequence $\left\{f_{n}\right\}$ is a strong divisibility sequence.
Proof.

$$
\begin{aligned}
& \operatorname{gcd}\left(f_{2 m}, f_{2 n}\right)=\operatorname{gcd}\left(a_{1} U_{m}, a_{1} U_{n}\right)=a_{1} \operatorname{gcd}\left(U_{m}, U_{n}\right) \\
& \quad=a_{1} U_{\operatorname{gcd}(m, n)}=f_{2 \operatorname{gcd}(m, n)}=f_{\operatorname{gcd}(2 m, 2 n)} .
\end{aligned}
$$

Example 2.8. If we take $a_{1}=1, b_{1}=2, a_{2}=3, b_{2}=4$ in $\left\{f_{n}\right\}$, we get

$$
f_{n}= \begin{cases}f_{n-1}+2 q_{n-2}, & \text { if } n \text { is even } ; \\ 3 f_{n-1}+4 q_{n-2}, & \text { if } n \text { is odd. }\end{cases}
$$

In the following table we give the terms of the sequence for $1 \leq n \leq 10$.

n	0	1	$\mathbf{2}$	3	4	5	$\mathbf{6}$	7	$\mathbf{8}$	9	$\mathbf{1 0}$	\ldots
f_{n}	$\mathbf{0}$	1	$\mathbf{1}$	7	$\mathbf{9}$	55	$\mathbf{7 3}$	439	$\mathbf{5 8 5}$	3511	$\mathbf{4 6 8 1}$	\ldots

Let the even indices of this sequence $0,1,9,73,585,4681, \ldots$ gives $[$ A023001]. Since

$$
A=a_{1} a_{2}+b_{1}+b_{2}=3+2+4=9
$$

and

$$
B=b_{1} b_{2}=8,
$$

we have $\operatorname{gcd}(A, B)=\operatorname{gcd}(9,8)=1$. Also, since $a_{1}=1$, this sequence is a strong divisibility sequence by Theorem 2.6.

Example 2.9. If we take $a_{1}=1, b_{1}=3, a_{2}=2, b_{2}=4$ in $\left\{f_{n}\right\}$, we obtain

$$
f_{n}= \begin{cases}f_{n-1}+3 f_{n-2}, & \text { if } n \text { is even } ; \\ 2 f_{n-1}+4 f_{n-2}, & \text { if } n \text { is odd. }\end{cases}
$$

So the terms of the sequence are

n	$\mathbf{0}$	1	$\mathbf{2}$	3	4	5	$\boldsymbol{6}$	7	$\mathbf{8}$	9	$\mathbf{1 0}$	\ldots
f_{n}	0	1	$\mathbf{1}$	6	$\mathbf{9}$	42	$\mathbf{6 9}$	306	$\mathbf{5 1 3}$	2250	$\mathbf{3 7 8 9}$	\ldots

Let the even indices of this sequence $0,1,6,9,69,513,3789, \ldots$. Since $\operatorname{gcd}\left(f_{4}, f_{6}\right)=3 \neq$ $1=f_{2}=f_{\operatorname{gcd}(6,4)}$, it is not a strong divisibility sequence. Note that the hypothesis of Theorem 2.6 is not satisfied since $A=2+3+4=9$ and $B=12$ so that $\operatorname{gcd}(A, B)=\operatorname{gcd}(9,12)=3 \neq 1$.
2.2. The Case $b_{1}=b_{2}$ in $\left\{f_{n}\right\}$. In this subsection, the indices of $\left\{f_{n}\right\}$ are non-negative integers with $b_{1}=b_{2}$.

Lemma 2.10. Assume that $a_{1} \neq 0$. The terms of the sequences $\left\{f_{n}\right\}$ satisfy the following.
(i) If a and b are odd then

$$
f_{a+b}=f_{a} f_{b+1}+b_{1} f_{a-1} f_{b} .
$$

(ii) If a is odd and b is even then

$$
f_{a+b}=f_{a} f_{b+1}+\frac{b_{1} a_{2}}{a_{1}} f_{a-1} f_{b} .
$$

(iii) If a is even and b is odd then

$$
f_{a+b}=\frac{a_{2}}{a_{1}} f_{a} f_{b+1}+b_{1} f_{a-1} f_{b} .
$$

(iv) If a and b are even then

$$
f_{a+b}=f_{a} f_{b+1}+b_{1} f_{a-1} f_{b} .
$$

Proof. We only prove the identity (i). The other identities can be proven similarly.
(i) If a and b are odd then $a=2 k+1$ and $b=2 s+1$ for some integer k and s, respectively. By using identities $a_{1} a_{2}+b_{1}=\alpha+\beta-b_{1}, \alpha \beta=b_{1} b_{2}$ and $b_{1}=b_{2}$, we get

$$
\begin{aligned}
f_{a} & =\left(\alpha+\beta-b_{1}\right) \frac{\alpha^{k}-\beta^{k}}{\alpha-\beta}-\alpha \beta \frac{\alpha^{k-1}-\beta^{k-1}}{\alpha-\beta}, \\
f_{b+1} & =a_{1} \frac{\alpha^{s+1}-\beta^{s+1}}{\alpha-\beta}, \\
f_{a-1} & =a_{1} \frac{\alpha^{k}-\beta^{k}}{\alpha-\beta} \\
f_{b} & =\left(\alpha+\beta-b_{1}\right) \frac{\alpha^{s}-\beta^{s}}{\alpha-\beta}-\alpha \beta \frac{\alpha^{s-1}-\beta^{s-1}}{\alpha-\beta} .
\end{aligned}
$$

We want to prove the identity

$$
f_{a+b}=f_{a} f_{b+1}+b_{1} f_{a-1} f_{b}
$$

THE FIBONACCI QUARTERLY

for odd a and b. We denote the right-hand side of this identity by RHS.

$$
\begin{aligned}
R H S= & \left(\frac{(\alpha+\beta)\left(\alpha^{k}-\beta^{k}\right)}{\alpha-\beta}-\frac{\alpha \beta\left(\alpha^{k-1}-\beta^{k-1}\right)}{\alpha-\beta}\right) a_{1} \frac{\alpha^{s+1}-\beta^{s+1}}{\alpha-\beta} \\
& -\frac{a_{1} b_{1}\left(\alpha^{k}-\beta^{k}\right)\left(\alpha^{s+1}-\beta^{s+1}\right)}{(\alpha-\beta)^{2}}-\frac{a_{1} b_{1}^{2}\left(\alpha^{k}-\beta^{k}\right)\left(\alpha^{s}-\beta^{s}\right)}{(\alpha-\beta)^{2}} \\
& +\frac{a_{1} b_{1}\left(\alpha^{k}-\beta^{k}\right)}{\alpha-\beta}\left(\frac{(\alpha+\beta)\left(\alpha^{s}-\beta^{s}\right)}{\alpha-\beta}-\frac{\alpha \beta\left(\alpha^{s-1}-\beta^{s-1}\right)}{\alpha-\beta}\right) .
\end{aligned}
$$

If we expand and arrange the $R H S$, we get

$$
\begin{aligned}
R H S & =a_{1} \frac{\alpha^{k+1} \alpha^{s+1}+\beta^{k+1} \beta^{s+1}-\beta \alpha^{k+1} \alpha^{s}-\alpha \beta^{k+1} \beta^{s}}{(\alpha-\beta)^{2}} \\
& =a_{1} \frac{\alpha \alpha^{k+s+1}+\beta \beta^{k+s+1}-\beta \alpha^{k+s+1}-\alpha \beta^{k+s+1}}{(\alpha-\beta)^{2}} \\
& =a_{1} \frac{(\alpha-\beta)\left(\alpha^{k+s+1}-\beta^{k+s+1}\right)}{(\alpha-\beta)^{2}} \\
& =a_{1} \frac{\left(\alpha^{k+s+1}-\beta^{k+s+1}\right)}{\alpha-\beta} \\
& =f_{a+b} .
\end{aligned}
$$

Theorem 2.11. If $m, n \in \mathbb{Z}^{+}$, then we have

$$
m\left|n \Rightarrow f_{m}\right| f_{n}
$$

Proof. In order to show this, we break it into 4 cases.
(1) m and n are even.

By using Theorem 2.3, we obtain the desired result.
(2) m is odd and n is even.

If $m \mid n, m$ odd and n even then we can write $n=m(2 k)$ for some integer k. We want to show that $f_{m} \mid f_{m(2 k)}=f_{n}$. Since

$$
f_{n}=f_{m(2 k)}=f_{m k+m k}=f_{m k} f_{m k+1}+b_{1} f_{m k-1} f_{m k}
$$

by part (i) of Lemma 2.10 (if k is odd) or part (iv) of Lemma 2.10 (if k is even). So, we have $f_{m k} \mid f_{m(2 k)}$ for all positive inetegers k. That is, we have

$$
f_{m}\left|f_{2 m}, \quad f_{2 m}\right| f_{4 m}, \quad f_{3 m} \mid f_{6 m}, \quad \ldots
$$

Thus, we obtain the desired result from $f_{m} \mid f_{n}=f_{m(2 k)}$.
(3) m and n are odd.

If m divides n then we can write $n=m(2 k+1)$ for some integer k. Since $m(2 k)$ is even and m is odd, we get

$$
f_{n}=f_{m(2 k+1)}=f_{m(2 k)+m}=\frac{a_{2}}{a_{1}} f_{m(2 k)} f_{m+1}+b_{1} f_{m(2 k)-1} f_{m} .
$$

Now, using a_{1} divides f_{m+1} since $m+1$ is even by Corollary 2.1, $f_{m} \mid f_{m}$ and $f_{m} \mid$ $f_{m(2 k)}$ (we proved this in part 2) in the above equation, we get the desired result $f_{m} \mid$ $f_{n}=f_{m(2 k+1)}$.

CONDITIONAL (STRONG) DIVISIBILITY SEQUENCES

(4) m is even and n is odd.

This case is not possible since m divides n.

According to Theorem 2.11, if $b_{1}=b_{2}$ then the sequence $\left\{f_{n}\right\}$ is a conditional divisibility sequence. So we find a family of divisibility sequences.

Theorem 2.12. If n is a positive integer, then we have

$$
\operatorname{gcd}\left(f_{n}, f_{n-1}\right) \mid \lambda^{\omega}
$$

for some non-negative integer ω, where $\lambda=\operatorname{gcd}\left(a_{1} a_{2}, b_{1}\right)$.
Proof. By the definition of the sequence $\left\{f_{n}\right\}$ and $b_{1}=b_{2}$, we have

$$
f_{n}= \begin{cases}a_{1} f_{n-1}+b_{1} f_{n-2}, & \text { if } n \text { is even; } \tag{2.10}\\ a_{2} f_{n-1}+b_{1} f_{n-2}, & \text { if } n \text { is odd. }\end{cases}
$$

Assume that p is a prime such that $p \mid f_{n}$ and $p \mid f_{n-1}$ with $\operatorname{gcd}(p, \lambda)=1$. We prove the theorem breaking it into two cases.
(i) $\operatorname{gcd}\left(p, b_{1}\right)=1$. Since $p \mid f_{n}$ and $p \mid f_{n-1}$, we get $p \mid b_{1} f_{n-2}$ by (2.10). Then, we get p $\mid f_{n-2}$, since p and b_{1} are relatively prime. By the definition of the sequence $\left\{f_{n}\right\}$, we also have

$$
f_{n-1}= \begin{cases}a_{1} f_{n-2}+b_{1} f_{n-3}, & \text { if } n-1 \text { is even; } \tag{2.11}\\ a_{2} f_{n-2}+b_{1} f_{n-3}, & \text { if } n-1 \text { is odd. }\end{cases}
$$

Now, we have $p \mid f_{n-1}$ and $p \mid f_{n-2}$, so we can get $p \mid b_{1} f_{n-3}$ by (2.11). Similarly we get $p \mid f_{n-3}$, since $\operatorname{gcd}\left(p, b_{1}\right)=1$. If we continue the process in this way, we get $p \mid$ $f_{1}=1$. Thus, we obtain the desired result.
(ii) $\operatorname{gcd}\left(p, b_{1}\right) \neq 1$.

Since $\operatorname{gcd}(p, \lambda)=1$ and $\operatorname{gcd}\left(p, b_{1}\right) \neq 1$, we must have $\operatorname{gcd}\left(p, a_{1} a_{2}\right)=1$. This means that $\operatorname{gcd}\left(p, a_{1}\right)=1$ and $\operatorname{gcd}\left(p, a_{2}\right)=1$. We have $p \mid f_{n-1}$ and $p \mid b_{1} f_{n-3}$ (since $\left.p \mid b_{1}\right)$, so we get $p \mid a_{1} f_{n-2}$ or $p \mid a_{2} f_{n-2}$ according to the sign of $n-1$ by (2.11). Now, we have $\operatorname{gcd}\left(p, a_{1}\right)=\operatorname{gcd}\left(p, a_{2}\right)=1$, so $p \mid f_{n-2}$ for both cases. Then, since

$$
f_{n-2}= \begin{cases}a_{1} f_{n-3}+b_{1} f_{n-4}, & \text { if } n-2 \text { is even; } \\ a_{2} f_{n-3}+b_{2} f_{n-4}, & \text { if } n-2 \text { is odd; }\end{cases}
$$

we can similarly get $p \mid f_{n-3}$. If we continue in this way, we finally get $p \mid f_{1}=1$. As a result, we get the desired result.

Corollary 2.13. If $\operatorname{gcd}\left(a_{1} a_{2}, b_{1}\right)=1$, then

$$
\operatorname{gcd}\left(f_{m}, f_{m+1}\right)=1
$$

for any non-negative integer m.
Proof. The desired result is obtained by taking $\operatorname{gcd}\left(a_{1} a_{2}, b_{1}\right)=1$ in Theorem 2.12.
Theorem 2.14. If $\operatorname{gcd}\left(a_{1} a_{2}, b_{1}\right)=1$ and $a_{1}=1$, then

$$
\operatorname{gcd}\left(f_{m}, f_{n}\right)=f_{\operatorname{gcd}(m, n)}
$$

for non-negative integers m and n.

THE FIBONACCI QUARTERLY

Proof. Let $d_{1}=\operatorname{gcd}(m, n)$ and $d_{2}=\operatorname{gcd}\left(f_{m}, f_{n}\right)$ for positive even integers m and n. Since $d_{1} \mid m$ and $d_{1} \mid n$, we get $f_{d_{1}} \mid f_{m}$ and $f_{d_{1}} \mid f_{n}$ by Theorem 2.11. So, we obtain

$$
\begin{equation*}
f_{d_{1}} \mid d_{2} \tag{2.12}
\end{equation*}
$$

by the definition of the greatest common divisor. Since $d_{1}=\operatorname{gcd}(m, n)$, there exists integers a and b such that $d_{1}=a m+b n$. Since d_{1}, m, and n are positive integers, we must have either $a \leq 0$ or $b \leq 0$. Assume without loss of generality $a \leq 0$. There exists a $k \geq 0$ such that $a=-k$. So, we can rearrange the above equality as $b n=d_{1}+k m$. Now, we break it into four cases according to whether d_{1} and $k m$ are either even or odd.
(i) d_{1} is odd and $k m$ is odd.

If we use Lemma 2.10 by taking $b n=d_{1}+k m$, we get

$$
\begin{equation*}
f_{d_{1}+k m}=f_{d_{1}} f_{k m+1}+b_{1} f_{d_{1}-1} f_{k m} \tag{2.13}
\end{equation*}
$$

Since $d_{2}=\operatorname{gcd}\left(f_{m}, f_{n}\right)$, we have $d_{2} \mid f_{m}$ and $d_{2} \mid f_{n}$. Also, we have $f_{m} \mid f_{m k}$ and $f_{n} \mid f_{b n}$ Theorem 2.11. So, we get

$$
d_{2} \mid f_{m} \text { and } f_{m}\left|f_{k m} \Rightarrow d_{2}\right| f_{k m}
$$

and

$$
d_{2} \mid f_{n} \text { and } f_{n}\left|f_{b n} \Rightarrow d_{2}\right| f_{b n} .
$$

Now, we have $d_{2} \mid f_{k m}$ and $d_{2} \mid f_{b n}$ so that $d_{2} \mid f_{d_{1}} f_{k m+1}$ by equation 2.13. Also, since $\operatorname{gcd}\left(a_{1} a_{2}, b_{1}\right)=1$, so we must have

$$
\begin{equation*}
d_{2} \mid f_{d_{1}} \tag{2.14}
\end{equation*}
$$

by using Corollory 2.13. Note that $\operatorname{gcd}\left(f_{k m+1}, f_{k m}\right)=1$. By using (2.12) and (2.14), we get the desired result as follows:

$$
d_{2}=f_{d_{1}} \Rightarrow \operatorname{gcd}\left(f_{m}, f_{n}\right)=f_{\operatorname{gcd}(m, n)}
$$

(ii) d_{1} is odd and $k m$ is even. If we take $a_{1}=1$ then we can prove it similar to case (i).
(iii) d_{1} is even and $k m$ are odd. If $k m$ is odd then, k and m are both odd. If m is odd then $d_{1}=\operatorname{gcd}(m, n)$ is odd, that is contradiction. So, this case is not possible.
(iv) d_{1} and $k m$ are even.

It is clear, since the even indices of the sequence $\left\{f_{n}\right\}$ is a conditional strong divisibility sequence by previous subsection.

Now recall that the Lehmer sequence $\left\{u_{n}\right\}=\left\{u_{n}(R, Q)\right\}$ satisfies the second order linear recurrence equations with initial conditions $u_{0}=0, u_{1}=1$, and for $n \geq 2$

$$
u_{n}=u_{n}(R, Q)= \begin{cases}u_{n-1}-Q u_{n-2}, & \text { if } n \text { is even; } \\ R u_{n-1}-Q u_{n-2}, & \text { if } n \text { is odd; }\end{cases}
$$

and the associated Lehmer sequence $\left\{v_{n}\right\}=\left\{v_{n}(R, Q)\right\}$ satisfies the second order linear recurrence equations with initial conditions $v_{0}=2, v_{1}=1$, and for $n \geq 2$

$$
v_{n}=v_{n}(R, Q)= \begin{cases}R v_{n-1}-Q v_{n-2}, & \text { if } n \text { is even } \\ v_{n-1}-Q v_{n-2}, & \text { if } n \text { is odd }\end{cases}
$$

If we take $R=a_{1} a_{2}$ and $Q=-b_{1}$ in Lehmer numbers, we get

$$
f_{n}=\left\{\begin{array}{cc}
a_{1} u_{n}\left(a_{1} a_{2},-b_{1}\right), & \text { if } n \text { is even; } \\
u_{n}\left(a_{1} a_{2},-b_{1}\right), & \text { if } n \text { is odd. }
\end{array}\right.
$$

It is well-known that both Lehmer and associated Lehmer sequences are linear recurrence sequences of order at most four. If $\operatorname{gcd}(R, Q)=1$, Lehmer sequence $\left\{u_{n}(R, Q)\right\}$ is a strong divisibility sequence [6]. Using this fact, Bala showed that if $\operatorname{gcd}\left(a_{1} a_{2}, b_{1}\right)=1$, then $\left\{f_{n}\right\}$ with $b_{1}=b_{2}$ is a strong divisibility sequence in [1]. The Lehmer sequence is a special case of $\left\{f_{n}\right\}$.
Example 2.15. If we take $a_{1}=1, a_{2}=2, b_{1}=b_{2}=3$ in $\left\{f_{n}\right\}$, we get

$$
f_{n}= \begin{cases}f_{n-1}+3 q_{n-2}, & \text { if } n \text { is even } ; \\ 2 f_{n-1}+3 q_{n-2}, & \text { if } n \text { is odd. }\end{cases}
$$

In the following table we give the terms of the sequence for $1 \leq n \leq 10$

n	0	1	2	3	4	5	6	7	8	9	10	\ldots
f_{n}	0	1	1	5	8	31	55	203	368	1345	2449	\ldots

The terms of the sequence $0,1,1,5,8,31,55,203,368,1345, \ldots$ gives $[$ A002536]. Since we have $\operatorname{gcd}\left(a_{1} a_{2}, b_{1}\right)=\operatorname{gcd}(2,3)=1$ and $a_{1}=1$, this sequence is a strong divisibility sequence by Theorem 2.14.

3. The Lucas-Like Conditional Sequence $\left\{l_{n}\right\}$

We define the Lucas conditional sequence $\left\{l_{n}\right\}$ with the initial conditions $l_{0}=2, l_{1}=a_{2}$, and for $n \geq 2$,

$$
l_{n}= \begin{cases}a_{1} l_{n-1}+b_{1} l_{n-2}, & \text { if } n \text { is even; } \tag{3.1}\\ a_{2} l_{n-1}+b_{2} l_{n-2}, & \text { if } n \text { is odd; }\end{cases}
$$

by changing initial values in (1.2). We can get the following results for the sequence $\left\{l_{n}\right\}$ by taking $r=2$ in Theorems 5, 6, and 9 in [9].

For $n \geq 4$,

$$
\begin{equation*}
l_{n}=A l_{n-2}-B l_{n-4} \tag{3.2}
\end{equation*}
$$

where $A:=a_{1} a_{2}+b_{1}+b_{2}$ and $B:=b_{1} b_{2}$.
The generating function of the sequence $\left\{l_{n}\right\}$ is

$$
\begin{equation*}
L(x)=\frac{2+a_{2} x-\left(a_{1} a_{2}+2 b_{2}\right) x^{2}+b_{1} a_{2} x^{3}}{1-A x^{2}+B x^{4}} . \tag{3.3}
\end{equation*}
$$

By using (3.3), the Binet's formulas for the sequence $\left\{l_{n}\right\}$ are given:

$$
\begin{align*}
l_{2 m} & =\left(a_{1} a_{2}+2 b_{1}\right) \frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}-2\left(b_{1} b_{2}\right) \frac{\alpha^{m-1}-\beta^{m-1}}{\alpha-\beta} \tag{3.4}\\
l_{2 m+1} & =a_{2}\left(\left(a_{1} a_{2}+2 b_{1}+b_{2}\right) \frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}-b_{1} b_{2} \frac{\alpha^{m-1}-\beta^{m-1}}{\alpha-\beta}\right) \tag{3.5}
\end{align*}
$$

where $\alpha=\frac{A+\sqrt{A^{2}-4 B}}{2}$ and $\beta=\frac{A-\sqrt{A^{2}-4 B}}{2}$ that is, α and β are the roots of the polynomial $p(z)=z^{2}-A z+B$.
Corollary 3.1. If n is a odd positive integer, then $a_{2} \neq 0$ always divides l_{n}.
Proof. Since l_{n} and $a_{2} \neq 0$ are integers, we can clearly get the result by using (3.5).
Now, we will obtain some divisibility properties of the Lucas-like sequence $\left\{l_{n}\right\}$ and we will show some relations between $\left\{f_{n}\right\}$ and $\left\{l_{n}\right\}$. In this section we take $b_{1}=b_{2}$ in the Lucas-like sequence $\left\{l_{n}\right\}$.
Lemma 3.2. Let $m>n \geq 0$ and $e:=\min \{m-n, n\}$. The terms of the sequences $\left\{l_{n}\right\}$ satisfy the following:

THE FIBONACCI QUARTERLY

(i) If m and n are even then

$$
l_{m}=l_{m-n} l_{n}-b_{1}^{e} l_{|m-2 n|} .
$$

(ii) If m and n are odd then

$$
l_{m}=l_{m-n} l_{n} \pm b_{1}^{e} l_{|m-2 n|},
$$

where + sign is used if and only if $m-2 n \geq 0$.
(iii) If m is odd and n is even then

$$
l_{m}=l_{m-n} l_{n} \pm b_{1}^{e} l_{|m-2 n|},
$$

where + sign is used if and only if $m-2 n<0$.
(iv) If m is even and n is odd and $a_{2} \neq 0$ then

$$
l_{m}=\frac{a_{1}}{a_{2}} l_{m-n} l_{n}+b_{1}^{e} l_{|m-2 n|} .
$$

Proof. Here we only prove identity (i). Other identities can be proven similarly using $\alpha+\beta=$ $a_{1} a_{2}+2 b_{1}$ and $\alpha \beta=b_{1}^{2}$.
(i) Let $m:=2 k, n:=2 s$; for some $k, s \in \mathbb{Z}^{+}$. If $e:=\min \{m-n, n\}=n$ then $m-2 n \geq 0$ and $|m-2 n|=m-2 n$.

$$
\begin{aligned}
l_{m} & =l_{2 k}=\alpha^{k}+\beta^{k} \\
l_{n} & =l_{2 s}=\alpha^{s}+\beta^{s} \\
l_{m-n} & =l_{2(k-s)}=\alpha^{k-s}+\beta^{k-s} \\
l_{m-2 n} & =l_{2(k-2 s)}=\alpha^{k-2 s}+\beta^{k-2 s} \\
b_{1}^{n} l_{m-2 n} & =b_{1}^{2 s} l_{2(k-2 s)}=(\alpha \beta)^{s}\left(\alpha^{k-2 s}+\beta^{k-2 s}\right) \\
& =\alpha^{k-s} \beta^{s}+\alpha^{s} \beta^{k-s} .
\end{aligned}
$$

Therefore,

$$
l_{m}=l_{m-n} l_{n}-b_{1}^{n} l_{m-2 n} .
$$

If $e:=\min \{m-n, n\}=m-n$ then $m-2 n<0$ and $|m-2 n|=2 n-m$.

$$
\begin{aligned}
b_{1}^{m-n} l_{2 n-m} & =b_{1}^{2(k-s)} l_{2(2 s-k)}=(\alpha \beta)^{k-s}\left(\alpha^{2 s-k}+\beta^{2 s-k}\right) \\
& =\alpha^{k-s} \beta^{s}+\alpha^{s} \beta^{k-s}
\end{aligned}
$$

Therefore,

$$
l_{m}=l_{m-n} l_{n}-b_{1}^{m-n} l_{2 n-m} .
$$

Theorem 3.3. If $m \geq 2$ and n are positive integers, then we have

$$
m\left|n \Rightarrow l_{m}\right| l_{n},
$$

where $n=(2 k-1) m$.
Proof. We break the proof into two cases.
Case 1. m is even. Since $n=(2 k-1) m, n$ is even. Now we shall use induction on k. If $k=1$ then $n=m$ so that $l_{m} \mid l_{n}$. Assume that the induction hypothesis holds for $2 k-1$, that is l_{m} $\mid l_{(2 k-1) m}$. By part (i) of Lemma $3.2(i)$, we have

$$
l_{(2 k+1) m}=l_{2 k m+m}=l_{2 k m} l_{m}-b_{1}^{m} l_{(2 k-1) m} .
$$

CONDITIONAL (STRONG) DIVISIBILITY SEQUENCES

Since $l_{m} \mid l_{m}$ and $l_{m} \mid l_{(2 k-1) m}$, we get the desired result $l_{m} \mid l_{(2 k+1) m}$ by using the above equation.
Case 2. m is odd. Since $n=(2 k-1) m, n$ is odd. Similarly we use induction on k. If $k=1$ then $n=m$ so that $l_{m} \mid l_{n}$. Assume that it holds for odd integer $2 k-1$, so we have $l_{m} \mid$ $l_{(2 k-1) m}$. By part (ii) of Lemma 3.2 (iii), we have

$$
l_{(2 k+1) m}=l_{2 k m+m}=l_{2 k m} l_{m}+b_{1}^{m} l_{(2 k-1) m} .
$$

Since $l_{m} \mid l_{m}$ and $l_{m} \mid l_{(2 k-1) m}$, we get the desired result $l_{m} \mid l_{(2 k+1) m}$.
Corollary 3.4. If $m \geq 2$ and n are positive integers, then we have

$$
\operatorname{gcd}\left(l_{m}, l_{n}\right)=l_{\operatorname{gcd}(m, n)},
$$

where $n=(2 k-1) m$.
Proof. Since $n=(2 k-1) m$, we get $\operatorname{gcd}(m, n)=m$. We have $l_{\operatorname{gcd}(m, n)} \mid l_{n}$ by Theorem 3.3 and $l_{\operatorname{gcd}(m, n)} \mid l_{m}$ since $\operatorname{gcd}(m, n)=m$. So, $l_{\operatorname{gcd}(m, n)} \mid \operatorname{gcd}\left(l_{m}, l_{n}\right)$. Also, since we have $\operatorname{gcd}\left(l_{n}, l_{m}\right) \mid l_{m=\operatorname{gcd}(m, n)}$, we get the desired result.

Theorem 3.5. Let $m=2^{a} m^{\prime}, n=2^{b} n^{\prime}, m^{\prime}$ and n^{\prime} odd, a and $b \geq 0$, and let $d=\operatorname{gcd}(m, n)$. If $\operatorname{gcd}\left(a_{1} a_{2}, b_{1}\right)=1$ then

$$
\operatorname{gcd}\left(l_{m}, l_{n}\right)=\left\{\begin{array}{cc}
l_{d}, & \text { if } a=b ; \\
1 \text { or } 2, & \text { if } a \neq b .
\end{array}\right.
$$

Proof. To prove the theorem, we need a result due to McDaniel [8]. As noted in [8, page 28], the formula remains valid for associated Lehmer sequences. Indeed, the associated Lehmer sequences $\left\{v_{n}(R, Q)\right\}$ with parameters $R=a_{1} a_{2}$ and $Q=-b_{1}$ is a special case of the conditional sequence $\left\{l_{n}\right\}$ for the case of $b_{1}=b_{2}$, that is

$$
l_{n}=\left\{\begin{array}{cc}
v_{n}\left(a_{1} a_{2},-b_{1}\right), & \text { if } n \text { is even; } \\
a_{2} v_{n}\left(a_{1} a_{2},-b_{1}\right), & \text { if } n \text { is odd. }
\end{array}\right.
$$

There are two cases when $a=b$.
Case 1. m and n are odd. We have

$$
\begin{aligned}
\operatorname{gcd}\left(l_{n}, l_{m}\right) & =\operatorname{gcd}\left(a_{2} v_{n}, a_{2} v_{m}\right) \\
& =a_{2} \operatorname{gcd}\left(v_{n}, v_{m}\right) \\
& =a_{2} v_{\operatorname{gcd}(n, m)} \\
& =l_{\operatorname{gcd}(n, m)} \text { since } \operatorname{gcd}(n, m) \text { is odd. }
\end{aligned}
$$

Case 2. m and n are even. We have

$$
\begin{aligned}
\operatorname{gcd}\left(l_{n}, l_{m}\right) & =\operatorname{gcd}\left(v_{n}, v_{m}\right) \\
& =v_{\operatorname{gcd}(n, m)} \\
& =l_{\operatorname{gcd}(n, m)} \text { since } \operatorname{gcd}(n, m) \text { is even. }
\end{aligned}
$$

When $a \neq b$, the proof depends on the parities of n and m. Let us show that

$$
\operatorname{gcd}\left(l_{m}, l_{n}\right)=1 \text { or } 2
$$

in the case when m is odd and n is even. The remaining cases are similar.
First we prove

$$
\operatorname{gcd}\left(v_{2 n}, a_{2}\right)=1 \text { or } 2, \text { for all positive integers } n
$$

for the sequence $\left\{v_{n}\left(a_{1} a_{2}, b_{1}\right)\right\}$, where a_{2} is prime to v_{n} when n is even.

THE FIBONACCI QUARTERLY

The proof is by induction. This is clearly true when $n=1$ since $v_{2}=a_{1} a_{2}+2 b_{1}$. Assume that

$$
\operatorname{gcd}\left(v_{2 n}, a_{2}\right)=1 \text { or } 2 \text { for some } n .
$$

Using the recurrence relation of $\left\{v_{n}\right\}$, we find

$$
\begin{aligned}
\operatorname{gcd}\left(v_{2 n+2}, a_{2}\right) & =\operatorname{gcd}\left(a_{1} a_{2} v_{2 n+1}+b_{1} v_{2 n}, a_{2}\right) \\
& =\operatorname{gcd}\left(b_{1} v_{2 n}, a_{2}\right) \\
& =\operatorname{gcd}\left(v_{2 n}, a_{2}\right) \text { since by assumption } a_{2} \text { is relatively prime to } b_{1} \\
& =1 \text { or } 2
\end{aligned}
$$

and the induction goes through.
By the choices of $a_{1} a_{2}$ and b_{1}, we get

$$
\begin{aligned}
\operatorname{gcd}\left(l_{n}, l_{m}\right) & =\operatorname{gcd}\left(v_{n}, a_{2} v_{m}\right) \\
& =\operatorname{gcd}\left(v_{n}, v_{m}\right), \text { since } \operatorname{gcd}\left(v_{n}, a_{2}\right)=1 \text { or } 2 \text { for } n \text { is even } \\
& =1 \text { or } 2 .
\end{aligned}
$$

3.1. Some more divisibility properties. The following lemma is a generalization of a famous identity.
Lemma 3.6. If n is even, then $f_{2 n}=f_{n} l_{n}$, otherwise $f_{2 n}=\frac{a_{1}}{a_{2}} f_{n} l_{n}$.
Proof. If n is even then $n=2 m$ for an integer m. We have

$$
f_{2 m}\left(\frac{b_{2}-b_{1}}{a_{1}} f_{2 m}+l_{2 m}\right)=\frac{a_{1}\left(\alpha^{m}-\beta^{m}\right)\left(A\left(\alpha^{m}-\beta^{m}\right)-2 B\left(\alpha^{m-1}-\beta^{m}\right)\right)}{(\alpha-\beta)^{2}}
$$

by using (2.3) and (3.4) where $A:=a_{1} a_{2}+b_{1}+b_{2}$ and $B:=b_{1} b_{2}$. If we substitute $\alpha+\beta=$ $a_{1} a_{2}+b_{1}+b_{2}$ and $\alpha \beta=b_{1} b_{2}$ in the above equation, we get

$$
\begin{aligned}
f_{2 m}\left(\frac{b_{2}-b_{1}}{a_{1}} f_{2 m}+l_{2 m}\right) & =\frac{a_{1}\left(\alpha^{m}-\beta^{m}\right)\left(\alpha^{m+1}+\beta \alpha^{m}-\alpha \beta^{m}-\beta^{m+1}-2 \beta \alpha^{m}+2 \alpha \beta^{m}\right)}{(\alpha-\beta)^{2}} \\
& =\frac{a_{1}\left(\alpha^{m}-\beta^{m}\right)(\alpha-\beta)\left(\alpha^{m}+\beta^{m}\right)}{(\alpha-\beta)^{2}} \\
& =\frac{a_{1}\left(\alpha^{2 m}-\beta^{2 m}\right)}{(\alpha-\beta)} \\
& =f_{4 m} .
\end{aligned}
$$

Since $b_{1}=b_{2}$ we obtain the desired result

$$
f_{2 n}=f_{n} l_{n} .
$$

Now assume that n is odd, so $n=2 m+1$ for some integer m. If we use (2.3), (2.4), and (3.5) and identities $\alpha+\beta=a_{1} a_{2}+b_{1}+b_{2}, \alpha \beta=b_{1} b_{2}$, and $b_{1}=b_{2}$ we obtain the desired result as follows:

$$
\begin{aligned}
\frac{a_{1}}{a_{2}} f_{2 m+1} l_{2 m+1} & =a_{1} \frac{\alpha^{2 m+2}-\alpha^{2 m+1} \beta-\alpha \beta^{2 m+1}+\beta^{2 m+2}}{(\alpha-\beta)^{2}} \\
& =a_{1} \frac{\alpha^{2 m+1}-\beta^{2 m+1}}{\alpha-\beta} \\
& =f_{4 m+2} .
\end{aligned}
$$

CONDITIONAL (STRONG) DIVISIBILITY SEQUENCES

Theorem 3.7. If m is even then

$$
m\left|n \Rightarrow l_{m}\right| f_{n}
$$

else

$$
m\left|n \Rightarrow l_{m}\right| f_{n} \quad\left(\frac{a_{1}}{a_{2}} \text { is integer }\right)
$$

where $n=2 k m$ and $k \geq 1$.
Proof. Since m is even, we have $f_{2 m}=f_{m} l_{m}$ by Lemma 3.6. So, $l_{m} \mid f_{2 m}$. Now, we have $n=2 m k$ for $k \geq 1$. We shall use induction on k. If $k=1$ then $n=2 m$ and $l_{m} \mid f_{2 m}$, that is, it holds for $k=1$. Assume that it holds for positive integer k, that is we have $l_{m} \mid f_{2 m k}$. By Lemma 2.2, we have

$$
f_{2 m(k+1)}=f_{2 m k+2 m}=f_{2 m k} \frac{f_{2(m+1)}}{a_{1}}-b_{1} b_{2} f_{2 m} \frac{f_{2(m k-1)}}{a_{1}} .
$$

Here, $\frac{f_{2(m+1)}}{a_{1}}$ and $\frac{f_{2(m k-1)}}{a_{1}}$ are integers by Corollary 2.1. Also, we have $l_{m} \mid f_{2 m}$ and $l_{m} \mid f_{2 m k}$, so we get the desired result $l_{m} \mid f_{2 m(k+1)}$.

References

[1] P. Bala, Notes on 2-periodic continued fractions and Lehmer sequences, OEIS Foundation Inc. (2014), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A243469.
[2] N. Biggs, Discrete Mathematics, Oxford University Press, New York, NY, 2002.
[3] R. D. Carmichael, On the numerical factors of the arithmetic function $\alpha^{n} \mp \beta^{n}$, Annals Math., 2nd series 15.1/4 (1913-1914), 30-48.
[4] M. Edson and O. Yayenie, A new generalization of Fibonacci sequence and extended Binet's formula, Integers, 9 (2009), 639-654.
[5] C. Kimberling, Strong divisibility sequences and some conjectures, The Fibonacci Quarterly, 17.1 (1979), 13-17.
[6] D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math., 31 (1930), 419-448.
[7] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math., 1 (1878), 184-240.
[8] W. H. McDaniel, The g.c.d. in Lucas sequences and Lehmer number sequences, The Fibonacci Quarterly, 29.1 (1991), 24-29.
[9] D. Panario, M. Sahin, and Q. Wang, A family of Fibonacci-like conditional sequences, INTEGERS (Electronic Journal of Combinatorial Number Theory), 13 (2013), A78.
[10] D. Panario, M. Sahin, Q. Wang, and W. Webb, General conditional recurrences, Applied Mathematics and Computation, 243 (2014), 220-231.
[11] M. Ward, Linear divisibility sequences, Trans. Amer. Math. Soc., 41 (1937), 276-286.
[12] H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory, 7.5 (2011), 1255-1277.

MSC2010: 11B39, 11B37.
Department of Mathematics, Science Faculty Ankara University, 06100, Tandogan Ankara, Turkey

E-mail address: msahin@ankara.edu.tr
Department of Mathematics, Science Faculty Ankara University, 06100, Tandogan Ankara, Turkey

E-mail address: etan@ankara.edu.tr

