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Abstract. Let Fm be the mth Fibonacci number. We prove that if F2n+6Fk + 4 and
4F2n+4Fk + 4 are both perfect squares, then k = 2n for n ≥ 1, except in the case n = 1, in
which we can additionally have k = 1.

1. Introduction

The sequence {Fn}n≥1 of Fibonacci numbers is given by

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn, n ≥ 1.

A set of m positive integers {a1, . . . , am} is called D(n) − m-tuple (or a Diophantine m-
tuple with the property D(n)) if aiaj + n is a perfect square, for all i 6= j in {1, . . . ,m}. In
1993, Dujella [2] proved that {F2n, F2n+6, 4F2n+4, 4F2n+2F2n+3F2n+5} is a D(4)-Diophantine
quadruple. In 2010, Filipin, He, and Togbé [4] proved that if d is a positive integer such that
{F2n, F2n+6, 4F2n+4, d} is a D(4)-Diophantine quadruple, then d = 4F2n+2F2n+3F2n+5. In this
paper, we fix the positive integer n and look at positive integers k such that {F2n+6, 4F2n+4, Fk}
is a D(4)-Diophantine triple. Our result is the following:

Theorem 1.1. If {F2n+6, 4F2n+4, Fk} is a D(4)-Diophantine triple, then k = 2n, except in
the case n = 1, in which we have the additional solution k = 1.

The exception k = 1 in case n = 1 comes from F1 = F2. A similar result was obtained by
He, Luca, and Togbé (see [5]). The technique will be similar and we will organize this paper
as follows. In Section 2, we recall some results useful for the remaining sections. Sections 3
through 6 help us prepare the proof of Theorem 1.1 using a combination of results on a linear
form in three logarithms and a linear form in two logarithms to reduce the bounds of the
parameters. The last section is devoted to the proof of Theorem 1.1.

2. Useful Lemmas

In this section, we will recall some results that will be useful in the next sections.
For any non-zero algebraic number γ of degree d over Q whose minimal polynomial over Z

is a
∏d

j=1(X − γ(j)), we denote by

h(γ) =
1

d

log a+

d∑
j=1

log max(1, |γ(j)|


its absolute logarithmic height. We will use the following result due to Matveev [8].

Lemma 2.1. Let Λ be a linear form in logarithms of multiplicatively independent totally
real algebraic numbers α1, . . . , αN with rational integer coefficients b1, . . . , bN (bN 6= 0). Let
h(αj) denote the absolute logarithmic height of αj for 1 ≤ j ≤ N . Define the numbers
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D, Aj (1 ≤ j ≤ N) and E by D := [Q(α1, . . . , αN ) : Q], Aj = max{Dh(αj), | logαj |},
E = max{1,max{|bj |Aj/AN ; 1 ≤ j ≤ N}}. Then

log |Λ| > −C(N)C0W0D
2Ω,

where

C(N) :=
8

(N − 1)!
(N + 2)(2N + 3)(4e(N + 1))N+1,

C0 := log(e4.4N+7N5.5D2 log(eD)),
W0 := log(1.5eED log(eD)), Ω = A1 · · ·AN .

We recall also the following result of Laurent [7].

Lemma 2.2. Let γ1 > 1 and γ2 > 1 be two real multiplicatively independent algebraic numbers,
b1, b2 ∈ Z not both 0 and

Λ = b2 log γ2 − b1 log γ1.

Let D := [Q(γ1, γ2) : Q]. Let

hi ≥ max

{
h(γi),

| log γi|
D

,
1

D

}
For i = 1, 2, b′ ≥ |b1|

Dh2
+
|b2|
Dh1

.

Then

log |Λ| ≥ −17.9 ·D4

(
max

{
log b′ + 0.38,

30

D
, 1

})2

h1h2.

The following lemma is a slight modification of the original version of Baker-Davenport
reduction method. (See [3], Lemma 5a).

Lemma 2.3. Assume that κ and µ are real numbers and M is a positive integer. Let P/Q be
the convergent of the continued fraction expansion of κ such that Q > 6M and let

η = ||µQ|| −M · ||κQ||,

where || · || denotes the distance from the nearest integer. If η > 0, then there is no solution of
the inequality

0 < jκ− k + µ < AB−j

in integers j and k with

log(AQ/η)

logB
≤ j ≤M.

3. The Related Sequences

For any fixed positive integer n, we assume that there exist positive integers k, x, y such
that

F2n+6Fk + 4 = x2, 4F2n+4Fk + 4 = y2. (3.1)

We eliminate Fk to obtain the norm form equation

F2n+6 · y2 − 4F2n+4 · x2 = 4(F2n+6 − 4F2n+4). (3.2)

To generate all solutions of this equation, we need the following lemma, which follows from
Lemma 1 of [1].
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Lemma 3.1. Let a and b be positive integers satisfying ab + 4 = r2 and a < b < 5a. All
positive solutions of the equation

ay2 − bx2 = 4(a− b)

are given by

y
√
a+ x

√
b = (±2

√
a+ 2

√
b)

(
r +
√
ab

2

)j

, j ≥ 0.

Since 4F2n+4F2n+6 + 4 = (2F2n+5)2 and F2n+6 < 4F2n+4 < 5F2n+6, Lemma 3.1 implies that
all solutions of equation (3.2) are given by

y
√
F2n+6 + 2x

√
F2n+4 = (±2

√
F2n+6 + 4

√
F2n+4)(F2n+5 +

√
F2n+6F2n+4)j , j ≥ 0.

Now, we define the sequence (Uj)j≥0 and (Vj)j≥0 by

Vj + Uj

√
F2n+6F2n+4 := (F2n+5 +

√
F2n+6F2n+4)j .

Thus, we get

x = xj = 2Vj ± F2n+6Uj . (3.3)

Substituting (3.3) into the first equation of (3.1), we obtain

Fk = ±4VjUj + (F2n+6 + 4F2n+4)U2
j . (3.4)

This is the main equation that we will solve. Put

C
(±)
j := ±4VjUj + (F2n+6 + 4F2n+4)U2

j , for j = 1, 2, . . . . (3.5)

Therefore, we have to solve the equation

C
(±)
j = Fk, (3.6)

for some positive integers j and k. One can notice that the above equation has the solution

C
(−)
1 = F2n. (3.7)

That is exactly the solution stated in Theorem (1.1). Our aim will be to show that there are
no other solutions. Since

F2n+9 < C
(+)
1 = 5F2n+6 < F2n+10

then, to get a contradiction, we will assume that j ≥ 2 for the + and − cases.
Put

α =
1 +
√

5

2
and α =

1−
√

5

2
.

Using Binet formula, we see that

Fk =
αk − αk

√
5

, for all k ≥ 1. (3.8)

Put

βn := F2n+5 +
√
F 2

2n+5 − 1,

and

Vj :=
βjn + β−jn

2
, Uj :=

βjn − β−jn

2
√
F 2

2n+5 − 1
. (3.9)
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It is obvious that Vj and Uj depend on n, but we will assume that n is fixed throughout the
argument. Define

γ(±)
n := ± 1√

F 2
2n+5 − 1

+
F2n+6 + 4F2n+4

4(F 2
2n+5 − 1)

. (3.10)

We use formula (3.5) to deduce that

C
(±)
j = ± β2j

n − β−2j
n√

F 2
2n+5 − 1

+ (F2n+6 + 4F2n+4) · β
2j
n − 2 + β−2j

n

4(F 2
2n+5 − 1)

= β2j
n γ

(±)
n − F2n+6 + 4F2n+4

2(F 2
2n+5 − 1)

+ β−2j
n γ

(∓)
n .

(3.11)

Therefore, the next equation comes from equation (3.6) when we use (3.8) and (3.11)

β2j
n γ

(±)
n − F2n+6 + 4F2n+4

2(F 2
2n+5 − 1)

+ β−2j
n γ(∓)

n =
αk − αk

√
5

. (3.12)

4. The Use of a Linear Form in Three Logarithms

In this section, we will introduce a linear form in three logarithms and determine some lower

and upper bounds. But, we will start by giving some bounds for γ
(+)
n and γ

(−)
n .

Lemma 4.1. We have

(i) 2.79α−2n−4 < γ
(+)
n < 2.85α−2n−4,

(ii) 0.02α−2n−4 < γ
(−)
n < 0.04α−2n−4.

Proof. The definition of γ
(±)
n gives√

γ
(±)
n =

1√
F2n+6

± 1

2
√
F2n+4

= 51/4α−n−2

(
1

α
√

1− 1/α4n+12
± 1

2
√

1− 1/α4n+8

)
.

(4.1)

As the Taylor series of (1− x)−1/2

1√
1− x

= 1 +
1

2
x+

3

8
x2 +

5

16
x3 + · · · ,

implies

1 +
1

2
x <

1√
1− x

< 1 +
x

2(1− x)
for x ∈ (0, 1),

we see that

1

α
+ 0.5 <

1

α
√

1− 1/α4n+12
+

1

2
√

1− 1/α4n+8
<

1

α
+ 0.51, (4.2a)

1

α
− 0.51 <

1

α
√

1− 1/α4n+12
− 1

2
√

1− 1/α4n+8
<

1

α
− 0.5. (4.2b)

We use (4.1) and (4.2) to obtain

1

α
+ 0.5 <

√
γ

(+)
n

51/4α−n−2
<

1

α
+ 0.51,
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and

1

α
− 0.51 <

√
γ

(−)
n

51/4α−n−2
<

1

α
− 0.5.

Straightforward calculations give the results (i) and (ii) in the lemma completing its proof. �

Let us define the following linear form in three logarithms:

Λ := 2j log βn − k logα+ log(
√

5 · γ(±)
n ). (4.3)

In the next result, we will determine an upper bound for Λ.

Lemma 4.2. If j ≥ 2, then 0 < Λ < 100β−2j
n .

Proof. We use equation (3.12) to obtain

β2j
n γ

(±)
n − αk

√
5

=
F2n+6 + 4F2n+4

2(F 2
2n+5 − 1)

− β−2j
n γ(∓)

n − αk

√
5
.

First, we suppose that β2j
n γ

(±)
n ≤ αk

√
5

. Thus, we see that

√
5

αk
≤ β−2j

n

γ
(±)
n

≤ β−2j
n

γ
(−)
n

,

and
1

4F2n+4
<

1

8F2n+4
+

1

2F2n+6
=
F2n+6 + 4F2n+4

2(F 2
2n+5 − 1)

< β−2j
n γ

(∓)
n +

αk

√
5
≤ β−2j

n γ
(+)
n +

1√
5 · αk

imply

1

4F2n+4
< β−2j

n

(
γ(+)
n +

1

5γ
(−)
n

)
. (4.4)

Inequality (4.4) and Lemma 4.1 give

4jF j
2n+6F

j
2n+4 < β2j

n < 4F2n+4

(
γ(+)
n +

1

5γ
(−)
n

)
< 4F2n+4(2.85α−2n−4 + 10α2n+4),

so

4j−1F j
2n+6F

j−1
2n+4 < 2.85α−2n−4 + 10α2n+4. (4.5)

Inequality (4.5) easily implies that j < 2, which contradicts the assumption.

So, we have β2j
n γ

(±)
n >

αk

√
5

. Therefore, Λ > 0. Moreover, as∣∣∣αk5−1/2β−2j
n (γ(±)

n )−1 − 1
∣∣∣ < F2n+6 + 4F2n+4

2(F 2
2n+5 − 1)

· 1

β2j
n γ

(±)
n

<
1

F2n+6
· 1

β2j
n γ

(−)
n

< 50β−2j
n

and the rightmost quantity above is < 1/2, we deduce that Λ < 100β−2j
n . Here, we have used

|Λ| < 2|eΛ − 1| whenever |eΛ − 1| < 1/2. (4.6)

�

Now, we will prove the next proposition.
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Proposition 4.3. If equation (3.4) has a positive integer solution, (j, k) with j > 1, then

j < 2.3 · 1012(n+ 3) log(156j(n+ 3)). (4.7)

Proof. We will apply Lemma 2.1 to the linear form in three logarithms.

Λ := 2j log βn − k logα+ log(
√

5 · γ(±)
n ),

and take

N = 3, D = 4, b1 = 2j, b2 = −k, b3 = 1,

and

α1 = βn, α2 = α, α3 =
√

5 · γ(±)
n .

We will prove that α1, α2, α3 are multiplicatively independent. We know that α2 ∈ Q(
√

5) and
α1, α

2
3 ∈ Q

(√
F2n+4 F2n+6

)
. Let us show that F2n+4F2n+6 is neither a square nor 5 times a

square. Indeed, otherwise, since gcd (F2n+4, F2n+6) = Fgcd(2n+4,2n+6) = F2 = 1, one of F2n+4

or F2n+6 would be a square. It is well-known that the only squares in the Fibonacci sequence
are 1 and 144, which implies that n = 3, 4, but none of F10F12, F12F14 is either a square or 5
times square. Thus, if we write F2n+4F2n+6 = du2 for an integer u and a square-free integer
d, then d > 1 and d 6= 5. So, if α1, α2, α3 are multiplicatively dependent, then α1 and α2

3

are multiplicatively dependent (because no power of α2 of a non-zero integer exponent is in

Q(
√
d)). Since α1 is a unit in Q(

√
d), we deduce that α2

3 = 5
(
γ

(±)
n

)2
is a unit, which is false

since the norm of 5
(
γ

(±)
n

)2
is

25
(
γ(+)
n γ(−)

n

)2
= 25 ·

(
4F2n+4 − F2n+6

4F2n+4F2n+6

)4

< 1,

so the above fraction is not an integer, for any n ≥ 1 as in the reduced form that rational
number has a denominator divisible by 2.

We consider

h(α1) = h(βn) =
1

2
log βn and h(α2) = h(α) =

1

2
logα.

As γ
(+)
n , γ

(−)
n are conjugate and roots of the quadratic polynomial

16F 2
2n+4F

2
2n+6X

2 − 8(F 2
2n+6F2n+4 + 4F2n+6F

2
2n+4)X + (4F2n+4 − F2n+6)2,

and ∣∣∣γ(±)
n

∣∣∣ ≤ ∣∣∣γ(+)
n

∣∣∣ =

(
1√
F2n+6

+
1

2
√
F2n+4

)2

< 1,

we see that

h(γ(±)
n ) =

1

2
log(16F 2

2n+4F
2
2n+6) = log(4F2n+4F2n+6) < (4n+ 10) logα+ log(4/5),

where we have used Fl < αl/
√

5 for l ∈ {2n+ 4, 2n+ 6}. We deduce that

h(α3) = h(
√

5 · γ(±)
n ) ≤ h(

√
5) + h(γ

(±)
n )

< 1
2 log(5) + (4n+ 10) logα+ log(4/5)

= log(4/
√

5) + (4n+ 10) logα < 4(n+ 3) logα,

where we used 4/
√

5 < α2. In conclusion, we take

A1 = 2 log βn, A2 = 2 logα, A3 = 16(n+ 3) logα.
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As αl−2 ≤ Fl ≤ αl−1, for all l ≥ 1, we deduce that

βn < 2F2n+5 < 2α2n+4 < α2(n+3).

Moreover, using α2 > 2, we have

αk−1 < 2αk−2 < 2Fk ≤ 8UjVj + 2(F2n+6 + 4F2n+4)U2
j

< (Vj + Uj
√
F2n+6F2n+4)2 = (F2n+5 +

√
F2n+6F2n+4)2j

< (2F2n+5)2j < (2α2n+4)2j < α4j(n+3).

Therefore, we consider

E = max

{
2j log βn

logα
, 8(n+ 3), k

}
≤ 4j(n+ 3).

By Lemmas 2.1 and 4.2, we get

C(3) =
8

2!
(3 + 2)(6 + 3)(42e)4 < 6.45 · 108,

C0 = log(e4.4·3+735.542 log(4e)) < 30,

W0 = log(1.5eE4 log(4e)) < log(156j(n+ 3)),

Ω = (2 log βn)(2 logα)(16(n+ 3) logα),

so

2j log βn − log 100 < − log |Λ| < 198144 · 108 · log(156j(n+ 3))(log βn)(logα)2(n+ 3),

which leads to

j < 2.3 · 1012(n+ 3) log(156j(n+ 3)).

This completes the proof of the proposition. �

5. The Use of a Linear Form In Two Logarithms

In this section, we will introduce a linear form in two logarithms that will help us improve
the result obtain in Proposition 4.3. From (3.7), when j = 1, we see that equation (3.4) has
the solution

k = 2n, for C = C
(−)
1 . (5.1)

We define the linear form in logarithms:

Λ0 = 2 log βn − 2n logα+ log(
√

5 · γ(±)
n ). (5.2)

First, we will determine an upper bound for Λ0.

Lemma 5.1. We have |Λ0| < 3050β−2
n .

Proof. For n = 1, this can be checked directly. Assume that n ≥ 2. We substitute (5.2) into
(3.12) to obtain

β2
nγ

(±)
n − α2n

√
5

=
F2n+6 + 4F2n+4

2(F 2
2n+5 − 1)

− β−2
n γ(∓)

n − α−2n

√
5
.
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If β2
nγ

(±)
n ≤ α2n

√
5

, then α−2n/
√

5 ≤ 1/(5β2
nγ

(±)
n ) and

∣∣∣α2n5−1/2β−2
n /γ

(±)
n − 1

∣∣∣ <
β−2
n γ

(∓)
n + α−2n/

√
5

β2
nγ

(±)
n

<
γ

(∓)
n + 1/(5γ(±))

β4
nγ

(±)
n

<
142.5 + 500α4n+8

β4
n

.

This inequality together with βn ≥ 13 + 2
√

42 and βn ≥ α2n+4 gives∣∣∣α2n5−1/2β−2
n /γ(±)

n − 1
∣∣∣ < 501β−2

n .

On the other hand, if β2γ
(±)
n > α2n/(

√
5), then∣∣∣α2n5−1/2β−2

n /γ
(±)
n − 1

∣∣∣ <
1/(2F2n+6) + 1/(2F2n+6)

β2
nγ

(±)
n

<
1

F2n+6β2γ
(±)
n

< 50β−2
n .

In both cases, ∣∣∣α2n5−1/2β−2
n /γ(±)

n − 1
∣∣∣ < 501β−2

n . (5.3)

Since n ≥ 2, we have βn ≥ 34 +
√

1155, so 501β−2
n < 1/2, and inequalities (4.6) and (5.3)

imply |Λ0| < 2 · 501β−2
n < 3050β−2

n . �

Let K := (2j − 1)(2n+ 5)− k − 5 and

Λ1 := K logα− (j − 1) log(5/4). (5.4)

Now, we determine an upper bound for Λ1.

Lemma 5.2. We have |Λ1| < (8j + 4192)α−4n−10.

Proof. We know that

βn = F2n+5 +
√
F 2

2n+5 − 1 = 2F2n+5 −
1

F2n+5 +
√
F 2

2n+5 − 1

= 2F2n+5

1− 1

2F2n+5(F2n+5 +
√
F 2

2n+5 − 1)

 (5.5)

and

2F2n+5 =
2√
5

(
α2n+5 − α2n+5

)
=

2√
5
α2n+5

(
1 +

1

α4n+10

)
.

We define

δn =

1− 1

2F2n+5(F2n+5 +
√
F 2

2n+5 − 1)

(1 +
1

α4n+10

)
.

From the above, we deduce that

log βn = log(2/
√

5) + (2n+ 5) logα+ log δn.
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We use (4.3) and (5.2) to obtain

Λ− Λ0 = (2j − 2) log βn − (k − 2n) logα

= (2j − 2) log(2/
√

5) + (2j − 2)(2n+ 5) logα
+(2j − 2) log δn − (k − 2n) logα

= (2j − 2) log δn +K logα− (j − 1) log(5/4).

The above calculation and the definition of Λ1 give

Λ1 = Λ− Λ0 − (2j − 2) log δn.

One can see that Lemmas 4.2, 5.1, and the inequalities

| log δn| ≤

∣∣∣∣∣∣log

1− 1

2F2n+5(F2n+5 +
√
F 2

2n+5 − 1)

∣∣∣∣∣∣+

∣∣∣∣log

(
1 +

1

α4n+10

)∣∣∣∣
<

1

F2n+5(F2n+5 +
√
F 2

2n+5 − 1)
+

1

α4n+10
<

4

α4n+2

imply that

|Λ1| ≤ |Λ|+ |Λ0|+ |(2j − 2)|| log δn| <
3150

β2
n

+
8(j − 1)

α4n+10
. (5.6)

Clearly, we get

βn = F2n+5

(
1 +

√
1− 1

F 2
2n+5

)
≥ F2n+5(1 + 2

√
42/13)

>
α2n+5

√
5

(1 + 2
√

42/13),

and then

β2
n > α4n+10 · (1 + 2

√
42/13)2

5
>

3α4n+10

4
. (5.7)

From (5.6) and (5.7), we obtain the desired result. �

We are ready now to reach the aim of this section by proving the next result.

Lemma 5.3. If equation (3.4) has a positive integer solution (j, k) with j > 1, then

j < 3.7 · 1019 and n < 207062.

Proof. To obtain a lower bound for Λ1, we will apply Lemma 2.2. So, we put

D = 2, γ1 =
5

4
, γ1 = α, b1 = (j − 1), b2 = K.

The condition of the lemma are fulfilled for our choices of parameters. Furthermore, we can

take h1 = log 5, h2 =
1

2
. By Lemma 5.2 , we have

K <
(j − 1) log(5/4) + (8j + 4192)α−4n−10

logα
< 0.47(j − 1) + 0.02j + 10.34 < 0.5j + 9.9.

So, we can take

b′ = 1.16j + 2.1 > (j − 1) +
K

2 log 5
=
|b1|
Dh2

+
|b2|
Dh1

.
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Therefore, Lemma 2.2 yields

log |Λ1| > −17.9 · 8 log 5 · (max{log(1.16j + 2.1) + 0.38, 15})2. (5.8)

From Lemma 5.2, we get

log |Λ1| < −(4n+ 10) logα+ log(8j + 4192). (5.9)

Combining the two bounds (5.8) and (5.9) on log |Λ1|, we have

n < 120(max{log(1.16j + 2.1) + 0.38, 15})2 + 0.6 log(8j + 4192). (5.10)

If

log(1.16j + 2.1) + 0.38 ≤ 15,

then

j < 1927201 and n < 120 · 152 + 0.6 log(8 · 1927201 + 4192) < 27010.

Otherwise,

n < 120(log(1.16j + 2.1) + 0.38)2 + 0.6 log(8j + 4192). (5.11)

Substituting inequality (5.11) into Proposition 4.3, we have

j < 2.3 · 1012(120(log(1.16j + 2.1) + 0.38)2 + 0.6 log(8j + 4192) + 3)
× log(156j(120(log(1.16j + 2.1) + 0.38)2 + 0.6 log(8j + 4192) + 3)).

(5.12)

A straightforward calculation gives j < 3.7 · 1019, which together with (5.11) implies n <
207062. �

6. Better Bounds on j and n

The goal of this section is to obtain better bounds on j and n. We use Lemma 5.9 to obtain

|K logα− (j − 1) log(5/4)| < (8j + 4192)α−4n−10.

Hence, we have ∣∣∣∣ log(5/4)

logα
− K

j − 1

∣∣∣∣ < 8j + 4192

(j − 1)α4n+10 logα
. (6.1)

First, we assume that
8j + 4192

(j − 1)α4n+10 logα
<

1

2(j − 1)2
. (6.2)

Then, we get ∣∣∣∣ log(5/4)

logα
− K

j − 1

∣∣∣∣ < 1

2(j − 1)2
.

Using a criterion of Legendre, we see that K/(j − 1) is a convergent in the simple continued
fraction expansion of log(5/4)/ logα. We know that

log 2

logα
= [0, 2, 6, 2, 1, 1, 3, 7, 1, 3, 1, 1, 22, 2, 1, 1, 4, 3, 1, 2, 1, 1, 4, 1, 1,

1, 12, 6, 1, 1, 4, 1, 8, 2, 1, 49, 1, 10, 6, 1, 1, 3, 1, 1, 1, 5, 22, 1, 1, . . .].

The denominator of the 46th convergent

25158053660121411107

54253653513327093513

is greater than the upper bound 3.7 · 1019 on j. The 45th convergent

4460457560349832575

9619031832089360168
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gives the lower bound ∣∣∣∣ log(5/4)

logα
− K

j − 1

∣∣∣∣ > 1.9 · 10−39. (6.3)

The combination of (6.1) and (6.3) gives

1.9 · 10−39 <
8j + 4192

(j − 1)α4n+10 logα
< 4208α−4n−10(logα)−1,

which implies that n < 49. We know (see [6]) that if pr/qr is the rth such convergent of
log(5/4)/ logα, then ∣∣∣∣ log(5/4)

logα
− pr
qr

∣∣∣∣ > 1

(ar+1 + 2)q2
r

,

where ar+1 is the (r + 1)st partial quotient of log(5/4)/ logα. We thus have

min

{
1

(ar+1 + 2)(j − 1)2

}
<

8j + 4192

(j − 1)α4n+10 logα
, for 2 ≤ r ≤ 45. (6.4)

Since max{ar+1 : 2 ≤ r ≤ 45} = a36 = 49, from (6.4) we get

α4n+10 < 51(j − 1)(8j + 4192)(logα)−1.

All this was when inequality (6.2) holds. On the other hand, if (6.2) does not hold, then

α4n+10 ≤ 2(j − 1)(8j + 4192)(logα)−1.

Both possibilities give

α4n+10 < 51(j − 1)(8j + 4192)(logα)−1 < 848j(j + 524) < 445200j2.

Therefore, we deduce the following result.

Proposition 6.1. If equation (3.4) has a positive integer solution (j, k) with j > 1, then

n < 1.04 log j + 4.3. (6.5)

This bound is better than that in (5.11). Combining Propositions 4.3 and 6.1, we get

j < 120 · 1012(1.04 log j + 7.3) log(156 · j · (1.04 log j + 7.3)),

which implies that j < 4.7 · 1015. Using Proposition 6.1, we get the following result.

Lemma 6.2. If equation (3.4) has a positive integer solution (j, k) with j > 1, then

j < 4.7 · 1015 and n < 42.

7. Proof of Theorem 1.1

In this section, we will use all the above results to complete the proof of Theorem 1.1. So, to
address the remaining cases, for 1 ≤ n ≤ 41, first we will use the Baker-Davenport reduction
method to reduce the bounds of n and j. Then, we will address the small values of n and j.

We know that
0 < 2j log βn − k logα+ log(

√
5 · γ(±)

n ) < 100β−2j
n .

To apply Lemma 2.3, we will consider

κ =
2 log βn
logα

, µ =
log(
√

5 · γ(±)
n )

logα
, A =

100

logα
, B = β2

n, M = 4.7 · 1015.

The program was developed in PARI/GP running with 200 digits. For the computations,
if the first convergent such that q > 6M does not satisfy the condition η > 0, then we use
the next convergent until we find the one that satisfies the conditions. In one minute, all the
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computations were done. In all cases, we obtained j ≤ 8. From Proposition 6.1, we deduce
that 1 ≤ n ≤ 6. So we have the following result.

Lemma 7.1. If equation (3.5) has a positive integer solution (j, k) with j > 1, then

j ≤ 8 and n ≤ 6.

We are now ready to prove Theorem 1.1. For 1 ≤ n ≤ 6, 2 ≤ j ≤ 8, we compute all C
(±)
j .

None of them is a Fibonacci number. This means that equation (3.5) has no positive integer
solution (j, k) with j ≥ 2. When j = 1, we have

C
(+)
1 = 4V1U1 + (F2n+6 + 4F2n+4)U2

1 = 4F2n+5 + F2n+6 + 4F2n+4 = 5F2n+6, for n ≥ 1

and

C
(−)
1 = −4V1U1 + (F2n+6 + 4F2n+4)U2

1 = −4F2n+5 + F2n+6 + 4F2n+4 = F2n, for n ≥ 1.

But F2n+9 < 5F2n+6 < F2n+10. Since F1 = F2, the additional solutions come from the triple
{F1, F8, 4F6} = {F2, F8, 4F6} = {1, 21, 32}.
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