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Abstract. Recently, we investigated the Fibonacci polynomial recurrences an+1 = an(∆
2a2

n+

3), where an = an(x), a0 = fe, e is an even positive integer, ∆ =
√
x2 + 4, and n ≥ 0; and

an+2 = an+1(∆
2a2

n + 2), where a1 = f2k; k is an odd positive integer; and n ≥ 1 [10]. We
also studied their Lucas counterparts: an+1 = an(a

2
n−3), where a0 = le; e is an even positive

integer; and n ≥ 0; and an+2 = an+1(a
2
n − 2) − 2, where a1 = l2k; a2 = l4k; k is an odd

positive integer; and n ≥ 1 [10]. This article focuses on the Jacobsthal, Vieta, and Chebyshev
extensions of these charming recurrences and their implications.

1. Introduction

As in [11], our discourse hinges on the links among the gibonacci subfamilies of Fibonacci,
Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and Chebyshev polynomials [5, 9, 13]; see
Table 1.

Jn(x) = x(n−1)/2fn(1/
√
x) jn(x) = xn/2ln(1/

√
x)

Vn(x) = in−1fn(−ix) vn(x) = inln(−ix)

Vn(x) = Un−1(x/2) vn(x) = 2Tn(x/2)

xVn(x
2 + 2) = f2n xvn(x

2 + 2) = l2n

J2n(x) = xn−1Vn

(

2x+ 1

x

)

j2n(x) = xnvn

(

2x+ 1

x

)

.

Table 1: Links Among the Gibonacci Subfamilies
These powerful tools pave the way for our explorations.

In the interest of brevity and clarity, again we omit the argument in the functional notation
when there is no ambiguity; so gn, for example, will mean gn(x). Also, we omit a lot of basic,
but messy algebra.

We begin our pursuit with recurrence A from [10].

2. Polynomial Extensions of Recurrence A

Consider the first-order recurrence

an+1 = an(∆
2a2n + 3), (2.1)

where a0 = fe, e is an even positive integer, and n ≥ 0 [10]. Its solution is an = fe·3n .
It follows by the relationships in Table 1 that recurrence (2.1) has Jacobsthal, Vieta, and

Chebyshev implications.
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2.1. Jacobsthal Extensions. Let bn = bn(x) = x(e·3
n
−1)/2an(1/

√
x). Replacing x with 1/

√
x

in (2.1), and then multiplying the resulting equation by x(e·3
n+1

−1)/2, we get the recurrence

bn+1 = bn
[

(4x+ 1)b2n + 3xe·3
n]

, (2.2)

where b0 = x(e−1)/2a0(1/
√
x) = x(e−1)/2fe(1/

√
x) = Je(x) and n ≥ 0. Its solution is given

by bn = x(e·3
n
−1)/2an(1/

√
x) = x(e·3

n
−1)/2fe·3n(1/

√
x) = Je·3n(x).

Letting bn(2) = Bn, equation (2.2) yields the recurrence

Bn+1 = Bn

(

9B2
n + 3 · 2e·3

n)

, (2.3)

where B0 = Je. Clearly, Bn = Je·3n , where n ≥ 0.
Suppose we let e = 4. Then

Bn+1 = Bn

(

9B2
n + 3 · 163

n)

,

where B0 = J4 = 5. Then B1 = 5(9 · 52 + 3 · 16) = 1, 365 = J4·3, and hence, B2 = 1365(9 ·
13652 + 3 · 163) = 22, 906, 492, 245 = J4·32 .

2.2. Vieta Extensions. Let bn = bn(x) = ie·3
n
−1an(−ix). Replacing x with −ix in (2.1),

and then multiplying the resulting equation by ie·3
n+1

−1, we get the recurrence

bn+1 = bn
[

(x2 − 1)b2n + 3
]

, (2.4)

where b0 = ie−1a0(−ix) = ie−1fe(−ix) = Ve(x) and n ≥ 0. Its solution is given by bn =
ie·3

n
−1an(1/

√
x) = ie·3

n
−1fe·3n(−ix) = Ve·3n(x).

It follows from Table 1 that recurrence (2.4) has Fibonacci, Jacobsthal, and Chebyshev
consequences.

2.2.1. Fibonacci Byproducts. Let zn = zn(x) = xbn(x
2 + 2). Then recurrence (2.4) implies

that
zn+1 = zn[(x

2 + 4)z2n + 3], (2.5)

where z0 = xb0(x
2 +2) = xVe(x

2 +2) = f2e. Then zn = xbn(x
2 +2) = xVe·3n(x

2 +2) = f2e·3n .
When zn(1) = Zn, equation (2.5) gives the recurrence

zn+1 = zn(5z
2
n + 3),

where Z0 = F2e. Clearly, Zn = F2e·3n , where n ≥ 0.
In particular, let e = 6. Then Z0 = F12 = 144, and hence, Z1 = Z0(5Z

2
0+3) = 14, 930, 352 =

F12·3. Consequently, Z2 = 14930352(5 · 149303522 + 3) = 16, 641, 027, 750, 620, 563, 662, 096 =
F12·32 .

2.2.2. Jacobsthal Byproducts. Letting t =
2x+ 1

x
and zn = zn(x) = xe·3

n
−1bn(t). Then equa-

tion (2.4) yields

zn+1 = zn
[

(4x+ 1)z2n + 3x2e·3
n]

, (2.6)

where z0 = xe−1b0(t) = xe−1Ve(t) = J2e(x). Then zn = xe·3
n
−1bn(t) = xe·3

n
−1Ve·3n(t) =

J2e·3n(x), where n ≥ 0.
Suppose we let zn(2) = Zn. Then equation (2.6) yields the Jacobsthal recurrence

Zn+1 = Zn

(

9Z2
n + 3 · 4e·3

n)

,

where Z0 = J2e. Clearly, Zn = J2e·3n , where n ≥ 0.
In particular, let e = 4. Then Z0 = J8 = 85 and Z1 = 85(9 ·852 +3 ·44) = 5, 592, 405 = J8·3.

Consequently, Z2 = 5592405(9 · 55924052 +3 · 412) = 1, 574, 122, 160, 956, 548, 404, 565 = J8·32 .
Next we pursue Chebyshev byproducts.

FEBRUARY 2018 11



THE FIBONACCI QUARTERLY

2.2.3. Chebyshev Byproducts. When zn = zn(x) = bn(2x), it follows from equation (2.4) that

zn+1 = zn
[

4(x2 − 1)z2n + 3
]

, (2.7)

where z0 = b0(2x) = Ve(2x) = Ue−1(x). Then zn = bn(2x) = Ve·3n(2x) = Ue·3n−1(x), where
n ≥ 0.

Next we investigate the polynomial extensions of recurrence B in [10]. The steps and
technique involved are quite similar; so we will highlight the key steps only.

3. Polynomial Extensions of Recurrence B

Consider the second-order recurrence

an+2 = an+1(∆
2a2n + 2), (3.1)

where an = an(x); a1 = f2k; a2 = f4k; k is an odd positive integer; and n ≥ 1 [10]. The
solution of this recurrence is an = fk·2n .

3.1. Jacobsthal Extensions. Letting bn = bn(x) = x(k·2
n
−1)/2an(1/

√
x), it follows from

equation (3.1) that

bn+2 = bn+1

[

(4x+ 1)b2n + 2xk·2
n
]

, (3.2)

where b1 = x(2k−1)/2a1(1/
√
x) = x(2k−1)/2f2k(1/

√
x) = J2k(x); b2 = x(4k−1)/2a2(1/

√
x) =

x(4k−1)/2f4k(1/
√
x) = J4k(x), where n ≥ 1. Clearly, bn = x(k·2

n
−1)/2an(1/

√
x) =

x(k·2
n
−1)/2fk·2n = Jk·2n(x).

Suppose we let bn(2) = Bn. Then equation (3.2) implies

Bn+2 = Bn+1

(

9B2
n + 2 · 2k·2

n
)

, (3.3)

where B1 = J2k and B2 = J4k. We then have Bn = Jk·2n , where n ≥ 1.
In particular, let k = 7. Then

Bn+2 = Bn+1

(

9B2
n + 2 · 1282

n)

,

where B1 = J14 = 5461 and B2 = J28 = 89, 478, 485. Consequently,
B3 = 89478485

(

9 · 54612 + 2 · 1282
)

= 24, 019, 198, 012, 642, 645 = J7·23 .

3.2. Vieta Extensions. Letting bn = bn(x) = ik·2
n
−1an(−ix), equation (3.1) yields

bn+2 = bn+1

[

(x2 − 4)b2n + 2
]

, (3.4)

where b1 = i2k−1a1(−ix) = i2k−1f2k(−ix) = V2k(x); b2 = i4k−1a2(−ix) = i4k−1f4k(−ix) =
V4k(x), where n ≥ 1. Since bn = ik·2

n
−1an(−ix), it follows that bn = ik·2

n
−1fk·2n(−ix) =

Vk·2n(x).
We now pursue the Fibonacci, Jacobsthal, and Chebyshev consequences of recurrence (3.4).

3.2.1. Fibonacci Consequences. Suppose we let zn = zn(x) = xbn(x
2 + 2). Recurrence (3.4)

then yields

zn+2 = zn+1

[

(x2 + 4)z2n + 2
]

, (3.5)

where z1 = xV2k(x
2+2) = f4k and z2 = xV4k(x

2+2) = f8k. Then zn = xVk·2n(x
2+2) = f2k·2n ,

where n ≥ 1.
When zn(1) = Zn, this recurrence implies

Zn+2 = Zn+1

(

5Z2
n + 2

)

,

where Z1 = F4k and Z2 = F8k. It also follows that Zn = F2k·2n , where n ≥ 1.
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Suppose, for example, k = 5. Then Z1 = F20 = 6765 and Z2 = F40 = 102, 334, 155.
Consequently, Z3 = 102334155

(

5 · 67652 + 2
)

= 23, 416, 728, 348, 467, 685 = F10·23 .

3.2.2. Jacobsthal Consequences. Let t =
2x+ 1

x
and zn = zn(x) = xk·2

n
−1bn(t). Equation

(3.4) yields

zn+2 = zn+1

[

(4x+ 1)z2n + 2x2k·2
n
]

, (3.6)

where z1 = x2k−1b1(t) = x2k−1V2k(t) = J4k(x) and z2 = x4k−1b2(t) = x4k−1V4k(t) = J8k(x).
Since zn = xk·2

n
−1bn(t), it follows that zn = J2k·2n(x), where n ≥ 1.

Letting zn(2) = Zn, recurrence (3.6) implies that

Zn+2 = Zn+1

(

9Z2
n + 2 · 4k·2

n
)

, (3.7)

where Z1 = J4k and Z2 = J8k. The solution of this recurrence is Zn = J2k·2n , where n ≥ 1.
Suppose, for example, we let k = 5. Then Z1 = J20 = 349, 525 and Z2 = J40 =

366, 503, 875, 925. Recurrence (3.7), coupled with these two initial conditions, implies that
Z3 = 366503875925(9 · 3495252 + 2 · 410 = 402, 975, 273, 204, 876, 391, 568, 725 = J10·23 .

Finally, we present the Chebyshev ramifications.

3.2.3. Chebyshev Consequences. Letting zn = zn(x) = bn(2x), it follows from recurrence (3.4)
that

zn+2 = zn+1

[

4(x2 − 1)z2n + 2
]

, (3.8)

where z1 = U2k−1(x) and z2 = U4k−1(x). Clearly, zn = Uk·2n−1(x), where n ≥ 1.
Interestingly, Fibonacci recurrences (2.1) and (3.4) have delightful Lucas counterparts [10].

We now investigate their Jacobsthal-Lucas, Vieta, and Chebyshev extensions and implications.

4. Lucas Extensions of Recurrence A

Consider the recurrence

an+1 = an(a
2
n − 3), (4.1)

where a0 = le, e is an even positive integer, and n ≥ 0. Its solution is an = le·3n [10].
We now pursue its Jacobsthal-Lucas Extensions.

4.1. Jacobsthal-Lucas Extensions. Let bn = bn(x) = x(e·3
n)/2an(1/

√
x). Replacing x with

1/
√
x in (4.1), and then multiplying the resulting equation by xe·3

n+1

, we get the recurrence

bn+1 = bn
(

b2n − 3xe·3
n)

, (4.2)

where b0 = xe/2a0(1/
√
x) = xe/2le(1/

√
x) = je(x) and n ≥ 0. Its solution is

bn = x(e·3
n)/2an(1/

√
x) = x(e·3

n)/2le·3n(1/
√
x) = je·3n(x).

Letting Bn = bn(2), recurrence (4.2) yields its Jacobsthal-Lucas numeric counterpart:

Bn+1 = Bn

(

B2
n − 3 · 2e·3

n)

, (4.3)

where B0 = je. Clearly, Bn = je·3n , where n ≥ 0.
When e = 4, this recurrence yields B1 = 17

(

172 − 3 · 24
)

= 4, 097 = j4·3. Consequently,

B2 = 4097
(

40972 − 3 · 212
)

= 68, 719, 476, 737 = j4·32 .
Next we explore Vieta extensions.
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4.2. Vieta Extensions. This time, we let bn = bn(x) = ie·3
n

an(−ix). Replacing x with −ix

in equation (4.1), and then multiplying the resulting equation by ie·3
n+1

, yields

bn+1 = bn(b
2
n − 3), (4.4)

where b0 = iean(−ix) = iele(−ix) = ve(x). The corresponding solution is given by bn =
ie·3

n

an(−ix) = ie·3
n

(−ix) = ve·3n(x), where n ≥ 0.
It follows from Table 1 that recurrence (4.4) has Lucas, Jacobsthal-Lucas, and Chebyshev

implications.

4.2.1. Lucas Implications. Suppose we let zn = zn(x) = xbn(x
2 + 2) in equation (4.4). Then

zn+1 = zn

(

z2n
x2

− 3

)

, (4.5)

where z0 = xb0(x
2+2) = xve(x

2+2) = l2e. Clearly, zn = xbn(x
2+2) = xve·3n(x

2+2) = l2e·3n ,
where n ≥ 0.

In particular, letting zn(1) = Zn, equation (4.5) yields the recurrence

Zn+1 = Zn

(

Z2
n − 3

)

,

where Z0 = L2e. Then Zn = L2e·3n , where n ≥ 0.
For example, let e = 6. Then Z0 = L12 = 322 and hence, Z1 = 322(3222 −3) = 33, 385, 282.

Consequently, Z2 = 33385282(333852822 − 3) = 37, 210, 469, 265, 847, 998, 489, 922 = L12·32 .
Next we pursue Jacobsthal-Lucas consequences.

4.2.2. Jacobsthal-Lucas Implications. Let t =
2x+ 1

x
and zn = zn(x) = xe·3

n

bn(t). It then

follows from recurrence (4.4) that

zn+1 = zn
(

z2n − 3x2e·3
n)

, (4.6)

where z0 = xeb0(t) = xeve(t) = j2e(x) and n ≥ 0. The solution of this recurrence is zn =
xe·3

n

bn(t) = xe·3
n

ve·3n(t) = j2e·3n(x).
Letting zn(2) = Zn, we then have the Jacobsthal-Lucas counterpart:

Zn+1 = Zn

(

Z2
n − 3 · 4e·3

n)

,

where Z0 = j2e. Correspondingly, Zn = j2e·3n , where n ≥ 0.
For example, let e = 4. Then Z0 = j8 = 257 and Z1 = 257(2572 − 3 · 44) = 16, 777, 217 =

j8·3. Consequently, Z2 = 16777217
(

167772172 − 3 · 412
)

= 4, 722, 366, 482, 869, 645, 213, 697 =
j8·32 .

Next we present Chebyshev consequences of recurrence (4.4).

4.2.3. Chebyshev Implications. Let zn = zn(x) =
1

2
bn(2x). Then equation (4.4) yields the

recurrence

zn+1 = zn
(

4z2n − 3
)

, (4.7)

where z0 =
1

2
b0(2x) =

1

2
ve(2x) = T2e(x) and n ≥ 0. Its solution is zn =

1

2
bn(2x) =

1

2
ve·3n(2x) = T2e·3n(x).

Next we focus on Recurrence B from [10].
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5. Lucas Extensions of Recurrence B

Consider the second-order recurrence

an+2 = an+1(a
2
n − 2)− 2, (5.1)

where a1 = l2k; a2 = l4k; and k is an odd positive integer [10]. Then an = lk·2n [10].
As can be predicted, recurrence (5.1) also has Jacobsthal-Lucas, Vieta, and Chebyshev

extensions.

5.1. Jacobsthal-Lucas Extensions. Let bn = bn(x) = x(k·2
n)/2an(1/

√
x). It then follows

from equation (5.1) that

bn+2 = bn+1

(

b2n − 2xk·2
n
)

− 2x2k·2
n

, (5.2)

where b1 = xka1(1/
√
x) = xkl2k(1/

√
x) = j2k(x); b2 = xka2(1/

√
x) = x2kl4k(1/

√
x) = j4k(x);

and n ≥ 1. The solution of this recurrence is bn = x(k·2
n)/2an(1/

√
x) = x(k·2

n)/2lk·2n(1/
√
x) =

jk·2n .
Letting bn(2) = Bn, this yields the numeric counterpart:

Bn+2 = Bn+1

(

B2
n − 2 · 2k·2

n
)

− 2 · 4k·2
n

, (5.3)

where B1 = j2k, B2 = j4k, and n ≥ 1.
When k = 5, for example, this yields the recurrence

Bn+2 = Bn+1

(

B2
n − 2 · 25·2

n)

− 2 · 10242
n

,

where B1 = j10 = 1025 and B2 = j20 = 1, 048, 577. Consequently,
B3 = 1048577

(

10252 − 211
)

− 2 · 10242 = 1, 099, 511, 627, 777 = j5·23 .
Next we pursue Vieta-Lucas polynomial extensions.

5.2. Vieta-Lucas Extensions. Let bn = bn(x) = ik·2
n

an(−ix). Replacing x with −ix in

(5.1) and multiplying the resulting equation by ik·2
n+2

, we get the recurrence

bn+2 = bn+1

(

b2n − 2
)

− 2, (5.4)

where b1 = i2ka1(−ix) = i2kl2k(−ix) = v2k(x); b2 = i4ka2(−ix) = i4kl4k(−ix) = v4k(x, and
n ≥ 1. Its solution is bn = ik·2

n

an(−ix) = ik·2
n

lk·2n(−ix) = vk·2n(x).
Recurrence (5.4) also has Lucas, Jacobsthal-Lucas, and Chebyshev ramifications.

5.2.1. Lucas Byproducts. Let zn = zn(x) = xbn(x
2+2). Replacing x with x2+2 in recurrence

(5.4) and then multiplying the resulting equation by x yields

zn+2 = zn+1

(

z2n
x2

− 2

)

− 2x, (5.5)

where z1 = xb1(x
2+2) = xv2k(x

2+2) = l2k; z2 = xb2(x
2+2) = xv4k(x

2+2) = l4k; and n ≥ 1.
The solution of recurrence (5.5) zn = xbn(x

2 + 2) = xvk·2n(x
2 + 2) = l2k·2n .

Suppose we let zn(1) = Zn. Then equation (5.5) yields its Lucas counterpart:

Zn+2 = Zn+1

(

Z2
n − 2

)

− 2, (5.6)

where Z1 = L2k and Z2 = L4k. Then Zn = L2k·2n , where n ≥ 1.
In particular, let k = 5. Then Z1 = L10 = 123 and Z2 = L20 = 15, 127. Consequently,

Z3 = 15127(1232−2)−2 = 228, 826, 127 = L5·23 and hence, Z4 = 228826127(151272 −2)−2 =
52, 361, 396, 397, 820, 127 = L5·24 .

Next we pursue implications to Jacobsthal-Lucas polynomials.
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5.2.2. A Jacobsthal-Lucas Byproducts. Let t =
2x+ 1

x
and zn = zn(x) = xk·2

n

bn(t). It then

follows from equation (5.4) that

zn+2 = zn+1

(

z2n − 2x4k·2
n
)

, (5.7)

where z1 = x2kb1(t) = x2kv2k(t) = j4k(x); z2 = x4kb2(t) = x4kv4k(t) = j8k(x); and n ≥ 1. It
now follows that zn = xk·2

n

bn(t) = xk·2
n

vk·2n(t) = j2k·2n(x).
Letting zn(2) = Zn, it follows from recurrence (5.7) that

Zn+2 = Zn+1

(

Z2
n − 2 · 4k·2

n
)

− 2 · 16k·2
n

,

where Z1 = j4k, Z2 = j8k, and n ≥ 1. Clearly, the solution of this numeric version is Zn =
j2k·2n .

In particular, let k = 5. Since Z1 = j20 = 1, 048, 577 and Z2 = j40 = 1, 099, 511, 627, 777, it
follows that Z3 = 1099511627777

(

10485772 − 2 · 410
)

− 2 · 1610 =
1, 208, 925, 819, 614, 629, 174, 706, 177 = j10·23 .

Finally, we study Chebyshev consequences.

5.2.3. Chebyshev Byproducts. Letting zn = zn(x) =
1

2
bn(2x), equation (5.4) yields the recur-

rence
zn+2 = zn+1

(

4z2n − 2
)

− 2,

where z1 =
1

2
b1(2x) =

1

2
v2k(2x) = T2k(x); z2 =

1

2
b1(2x) =

1

2
v4k(2x) = T4k(x), and n ≥ 1.

Consequently, zn =
1

2
bn(2x) =

1

2
vk·2n(2x) = Tk·2n(x).

6. Acknowledgment

The authors would like to thank the reviewer for his encouraging words and comments.

References

[1] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.5 (1970), 407–420.
[2] C. R. Diminnie, Problem 1909, Crux Mathematicorum, 20 (1994), 17.
[3] A. F. Horadam, Jacobsthal representation numbers, The Fibonacci Quarterly, 34.1 (1996), 40–54.
[4] A. F. Horadam, Jacobsthal representation polynomials, The Fibonacci Quarterly, 35.2 (1997), 137–148.
[5] A. F. Horadam, Vieta polynomials, The Fibonacci Quarterly, 40.3 (2002), 223–232.
[6] A. F. Horadam and Bro. J. M. Mahon, Pell and Pell-Lucas polynomials, The Fibonacci Quarterly, 23.1

(1985), 7–20.
[7] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
[8] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
[9] T. Koshy, Vieta polynomials and their close relatives, The Fibonacci Quarterly, 54.2 (2016), 141–148.

[10] T. Koshy and Z. Gao, Polynomial extensions of a Diminnie delight, The Fibonacci Quarterly, 55.1 (2017),
13–20.

[11] T. Koshy and Z. Gao, Polynomial extensions of a Diminnie delight revisited: Part I, The Fibonacci
Quarterly, (to appear).

[12] T. Rivlin, The Chebyshev Polynomials, Wiley, New York, 1974.
[13] N. Robbins, Vieta’s triangular array and a related family of polynomials, International Journal of Mathe-

matics and Mathematical Sciences, 14 (1991), 239–244.
[14] A. G. Shannon and A. F. Horadam, Some relationships among Vieta, Morgan-Voyce and Jacobsthal poly-

nomials, Applications of Fibonacci Numbers (ed. F.T. Howard), Kluwer, Dordrecht, 1999, 307–323.
[15] A. Sinefakopoulos, Solution to Problem 1909, Crux Mathematicorum, 20 (1994), 295–296.
[16] M. N. S. Swamy, Generalized Fibonacci and Lucas polynomials and their associated diagonal polynomials,

The Fibonacci Quarterly, 37.3 (1999), 213–222.

16 VOLUME 56, NUMBER 1



POLYNOMIAL EXTENSIONS OF A DIMINNIE DELIGHT REVISITED: PART II

MSC2010: 11B37, 11B39, 11B50

Department of Mathematics, Framingham State University, Framingham, Massachusetts 01701

E-mail address: tkoshy@emeriti.framingham.edu

Department of Mathematics, Framingham State University, Framingham, Massachusetts 01701

E-mail address: zgao@framingham.edu

FEBRUARY 2018 17


