WEIGHTED SUMS OF SOME SECOND-ORDER SEQUENCES

KUNLE ADEGOKE

Abstract

We derive weighted summation identities involving the second-order recurrence sequence $\left\{w_{n}\right\}=\left\{w_{n}(a, b ; p, q)\right\}$ defined by $w_{0}=a, w_{1}=b ; w_{n}=p w_{n-1}-q w_{n-2}(n \geq 2)$, where a, b, p, and q are arbitrary complex numbers, with $p \neq 0$ and $q \neq 0$.

1. Introduction

Horadam [2] wrote a paper in which he established the basic arithmetical properties of his generalized Fibonacci sequence $\left\{w_{n}\right\}=\left\{w_{n}(a, b ; p, q)\right\}$ defined by

$$
\begin{equation*}
w_{0}=a, w_{1}=b ; w_{n}=p w_{n-1}-q w_{n-2}(n \geq 2), \tag{1.1}
\end{equation*}
$$

where a, b, p, and q are arbitrary complex numbers, with $p \neq 0$ and $q \neq 0$. Some well studied particular cases of $\left\{w_{n}\right\}$ are the sequences $\left\{u_{n}\right\},\left\{v_{n}\right\},\left\{G_{n}\right\},\left\{P_{n}\right\}$, and $\left\{J_{n}\right\}$ given by:

$$
\begin{gather*}
w_{n}(1, p ; p, q)=u_{n}(p, q), \tag{1.2}\\
w_{n}(2, p ; p, q)=v_{n}(p, q), \tag{1.3}\\
w_{n}(a, b ; 1,-1)=G_{n}(a, b), \tag{1.4}\\
w_{n}(0,1 ; 2,-1)=P_{n}, \tag{1.5}
\end{gather*}
$$

and

$$
\begin{equation*}
w_{n}(0,1 ; 1,-2)=J_{n} . \tag{1.6}
\end{equation*}
$$

Note that $u_{n}(1,-1)=F_{n+1}$ and $v_{n}(1,-1)=L_{n}$, where $F_{n}=G_{n}(0,1)$ and $L_{n}=G_{n}(2,1)$ are the classic Fibonacci numbers and Lucas numbers, respectively. P_{n} and J_{n} are the Pell numbers and Jacobsthal numbers, respectively. Note also that $u_{n}(2,-1)=P_{n+1}$ and $u_{n}(1,-2)=J_{n+1}$. The sequence $\left\{G_{n}\right\}$ was introduced by Horadam [1] in 1961, (under the notation $\left\{H_{n}\right\}$).

Extension of the definition of w_{n} to negative subscripts is provided by writing the recurrence relation as $w_{-n}=\left(p w_{-n+1}-w_{-n+2}\right) / q$. Horadam [2] showed that:

$$
\begin{gather*}
u_{-n}=-q^{-n+1} u_{n-2}, \tag{1.7}\\
v_{-n}=q^{n} v_{n}, \tag{1.8}
\end{gather*}
$$

and

$$
\begin{equation*}
w_{-n}=\frac{a u_{n}-b u_{n-1}}{a u_{n}+(b-p a) u_{n-1}} w_{n} . \tag{1.9}
\end{equation*}
$$

Our main goal in this paper is to derive weighted summation identities involving the numbers w_{n}. For example, we shall derive (Theorem 5) the following weighted binomial sum:

$$
\left(-q u_{r-1}\right)^{k} \sum_{j=0}^{k}\binom{k}{j}\left(-\frac{u_{r}}{q u_{r-1}}\right)^{j} w_{m-k(r+1)+j}=w_{m}
$$

which generalizes Horadam's result [2, equation 3.19]:

$$
(-q)^{n} \sum_{j=0}^{n}\binom{n}{j}\left(-\frac{p}{q}\right)^{j} w_{j}=w_{2 n}
$$

the latter identity being an evaluation of the former at $m=2 n, k=n, r=1$.
As another example, it is known (first identity of Cor. 15, [3]) that

$$
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} F_{j}=-F_{n}
$$

but this can be generalized to:

$$
\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \frac{G_{r j}}{F_{r+1}^{j}}=\left(\frac{F_{r}}{F_{r+1}}\right)^{k} \frac{G_{0} F_{k+1}-G_{1} F_{k}}{G_{0} F_{k-1}+G_{1} F_{k}} G_{k}
$$

which is itself a special case of a more general result (see Theorem 6):

$$
\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \frac{w_{r j}}{u_{r}^{j}}=\left(\frac{u_{r-1}}{u_{r}}\right)^{k} \frac{a u_{k}-b u_{k-1}}{a u_{k}+(b-p a) u_{k-1}} w_{k} .
$$

As an example of non-binomial sums derived in this paper, we mention (see Theorem 3):

$$
u_{r-1} \sum_{j=0}^{k} \frac{w_{r j}}{\left(-q u_{r-2}\right)^{j}}=\frac{w_{k r+r-1}}{\left(-q u_{r-2}\right)^{k}}+(a p-b) u_{r-2},
$$

of which a special case is

$$
F_{r} \sum_{j=0}^{k} \frac{G_{r j}}{F_{r-1}^{j}}=\frac{G_{k r+r-1}}{F_{r-1}^{k}}-F_{r-1}\left(G_{1}-G_{0}\right) .
$$

Another example in this category is (see Theorem 2):

$$
q^{n-r} e u_{r-1} \sum_{j=0}^{k} \frac{u_{r j}}{\left(w_{n} / w_{n-r}\right)^{j}}=\frac{w_{n+k r+1} w_{n-r}}{\left(w_{n} / w_{n-r}\right)^{k}}-w_{n} w_{n-r+1},
$$

giving rise to the following results for the $\left\{G_{m}\right\},\left\{P_{m}\right\}$, and $\left\{J_{m}\right\}$ sequences:

$$
\begin{gathered}
(-1)^{n-r}\left(G_{0} G_{1}+G_{0}^{2}-G_{1}^{2}\right) F_{r} \sum_{j=0}^{k} \frac{F_{r j+1}}{\left(G_{n} / G_{n-r}\right)^{j}}=\frac{G_{n+k r+1} G_{n-r}}{\left(G_{n} / G_{n-r}\right)^{k}}-G_{n} G_{n-r+1}, \\
(-1)^{n-r-1} P_{r} \sum_{j=0}^{k} \frac{P_{r j+1}}{\left(P_{n} / P_{n-r}\right)^{j}}=\frac{P_{n+k r+1} P_{n-r}}{\left(P_{n} / P_{n-r}\right)^{k}}-P_{n} P_{n-r+1},
\end{gathered}
$$

and

$$
(-1)^{n-r-1} 2^{n-r} J_{r} \sum_{j=0}^{k} \frac{J_{r j+1}}{\left(J_{n} / J_{n-r}\right)^{j}}=\frac{J_{n+k r+1} J_{n-r}}{\left(J_{n} / J_{n-r}\right)^{k}}-J_{n} J_{n-r+1} .
$$

We require the following identities, derived in [2]:

$$
\begin{gather*}
w_{m+r}=u_{r} w_{m}-q u_{r-1} w_{m-1}, \tag{1.10}\\
v_{r} w_{m}=w_{m+r}+q^{r} w_{m-r}, \tag{1.11}
\end{gather*}
$$

and

$$
\begin{equation*}
w_{n-r} w_{m+n+r}=w_{n} w_{m+n}+q^{n-r} e u_{r-1} u_{m+r-1}, \tag{1.12}
\end{equation*}
$$

where $e=p a b-q a^{2}-b^{2}$.

THE FIBONACCI QUARTERLY

2. Weighted Sums

Lemma 1. Let $\left\{X_{m}\right\}$ and $\left\{Y_{m}\right\}$ be any two sequences such that X_{m} and $Y_{m}, m \in \mathbb{Z}$, are connected by a second-order recurrence relation $X_{m}=x X_{m-\alpha}+y Y_{m-\beta}$, where x and y are arbitrary non-vanishing complex functions, not dependent on m, and α and β are integers. Then,

$$
y \sum_{j=0}^{k} \frac{Y_{m-k \alpha-\beta+\alpha j}}{x^{j}}=\frac{X_{m}}{x^{k}}-x X_{m-(k+1) \alpha},
$$

for k a non-negative integer.
In particular,

$$
\begin{equation*}
y \sum_{j=0}^{k} \frac{Y_{\alpha j}}{x^{j}}=\frac{X_{k \alpha+\beta}}{x^{k}}-x X_{\beta-\alpha} . \tag{2.1}
\end{equation*}
$$

Proof. The proof shall be by induction on k. Consider the proposition \mathcal{P}_{k},

$$
\mathcal{P}_{k}:\left(y \sum_{j=0}^{k} \frac{Y_{m-k \alpha-\beta+\alpha j}}{x^{j}}=\frac{X_{m}}{x^{k}}-x X_{m-(k+1) \alpha}\right) ;
$$

with respect to the relation $X_{m}=x X_{m-\alpha}+y Y_{m-\beta}$. Clearly, \mathcal{P}_{0} is true. Assume that \mathcal{P}_{n} is true for a certain positive integer n. We want to prove that $\mathcal{P}_{n} \Rightarrow \mathcal{P}_{n+1}$. Now,

$$
\mathcal{P}_{n}:\left(f(n)=\frac{X_{m}}{x^{n}}-x X_{m-(n+1) \alpha}\right) ;
$$

where

$$
f(n)=y \sum_{j=0}^{n} \frac{Y_{m-n \alpha-\beta+j \alpha}}{x^{j}} .
$$

We have

$$
\begin{aligned}
f(n+1) & =y \sum_{j=0}^{n+1} \frac{Y_{m-n \alpha-\alpha-\beta+j \alpha}}{x^{j}}=y \sum_{j=-1}^{n} \frac{Y_{m-n \alpha-\alpha-\beta+j \alpha+\alpha}}{x^{j+1}} \\
& =\frac{y}{x} \sum_{j=-1}^{n} \frac{Y_{m-n \alpha-\beta+j \alpha}}{x^{j}}=\frac{y}{x}\left(x Y_{m-n \alpha-\beta-\alpha}+\sum_{j=0}^{n} \frac{Y_{m-n \alpha-\beta+j \alpha}}{x^{j}}\right) \\
& =y Y_{m-n \alpha-\alpha-\beta}+\frac{1}{x}\left(y \sum_{j=0}^{n} \frac{Y_{m-n \alpha-\beta+j \alpha}}{x^{j}}\right)
\end{aligned}
$$

(invoking the induction hypothesis \mathcal{P}_{n})

$$
\begin{aligned}
& =y Y_{m-n \alpha-\alpha-\beta}+\frac{1}{x}\left(\frac{X_{m}}{x^{n}}-x X_{m-n \alpha-\alpha}\right) \\
& =\frac{X_{m}}{x^{n+1}}-\left(X_{m-n \alpha-\alpha}-y Y_{m-n \alpha-\alpha-\beta}\right) .
\end{aligned}
$$

Since $X_{m-n \alpha-\alpha}-y Y_{m-n \alpha-\alpha-\beta}=x X_{m-n \alpha-\alpha-\alpha}$, we finally have

$$
f(n+1)=\frac{X_{m}}{x^{n+1}}-x X_{m-(n+2) \alpha}
$$

Thus,

$$
\mathcal{P}_{n+1}:\left(f(n+1)=\frac{X_{m}}{x^{n+1}}-x X_{m-(n+1+1) \alpha}\right)
$$

i.e. $\mathcal{P}_{n} \Rightarrow \mathcal{P}_{n+1}$ and the induction is complete.

Note that the identity of Lemma 1 can also be written in the equivalent form:

$$
\begin{equation*}
y \sum_{j=0}^{k} x^{j} Y_{m-\beta-j \alpha}=X_{m}-x^{k+1} X_{m-(k+1) \alpha} . \tag{2.2}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
y \sum_{j=0}^{k} x^{j} Y_{-j \alpha}=X_{\beta}-x^{k+1} X_{\beta-(k+1) \alpha} \tag{2.3}
\end{equation*}
$$

Theorem 1. For integer m, non-negative integer k and any integer r for which $w_{r-1} \neq 0$, the following identity holds:

$$
\sum_{j=0}^{k}\left(\frac{w_{r}}{q w_{r-1}}\right)^{j} w_{m+r-k+j}=\left(\frac{w_{r}}{q w_{r-1}}\right)^{k} u_{m} w_{r}-q u_{m-k-1} w_{r-1} .
$$

In particular,

$$
\begin{equation*}
q^{r-1} \sum_{j=0}^{k}\left(\frac{w_{r}}{q w_{r-1}}\right)^{j} w_{j}=\left(\frac{w_{r}}{q w_{r-1}}\right)^{k} q^{r-1} u_{k-r} w_{r}+u_{r-1} w_{r-1} . \tag{2.4}
\end{equation*}
$$

Proof. Interchange m and r in identity (1.10) and write the resulting identity as

$$
u_{m}=\frac{q w_{r-1}}{w_{r}} u_{m-1}+\frac{1}{w_{r}} w_{m+r} .
$$

Identify $X=u, Y=w, x=q w_{r-1} / w_{r}, y=1 / w_{r}, \alpha=1$, and $\beta=-r$, and use these in Lemma 1.

The Fibonacci, Lucas, and Pell versions of Theorem 1 are, respectively,

$$
\begin{align*}
& \sum_{j=0}^{k}(-1)^{j}\left(\frac{F_{r}}{F_{r-1}}\right)^{j} F_{m+r-k+j}=(-1)^{k}\left(\frac{F_{r}}{F_{r-1}}\right)^{k} F_{m+1} F_{r}+F_{m-k} F_{r-1}, \tag{2.5}\\
& \sum_{j=0}^{k}(-1)^{j}\left(\frac{L_{r}}{L_{r-1}}\right)^{j} L_{m+r-k+j}=(-1)^{k}\left(\frac{L_{r}}{L_{r-1}}\right)^{k} F_{m+1} L_{r}+F_{m-k} L_{r-1}, \tag{2.6}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{j}\left(\frac{P_{r}}{P_{r-1}}\right)^{j} P_{m+r-k+j}=(-1)^{k}\left(\frac{P_{r}}{P_{r-1}}\right)^{k} P_{m+1} P_{r}+P_{m-k} P_{r-1} \tag{2.7}
\end{equation*}
$$

In particular, we have

$$
\begin{align*}
\sum_{j=0}^{k}(-1)^{j}\left(\frac{F_{r}}{F_{r-1}}\right)^{j} F_{r+j} & =(-1)^{k}\left(\frac{F_{r}}{F_{r-1}}\right)^{k} F_{k+1} F_{r}, \tag{2.8}\\
\sum_{j=0}^{k}(-1)^{j}\left(\frac{L_{r}}{L_{r-1}}\right)^{j} L_{r+j} & =(-1)^{k}\left(\frac{L_{r}}{L_{r-1}}\right)^{k} F_{k+1} L_{r} \tag{2.9}
\end{align*}
$$

THE FIBONACCI QUARTERLY

and

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{j}\left(\frac{P_{r}}{P_{r-1}}\right)^{j} P_{r+j}=(-1)^{k}\left(\frac{P_{r}}{P_{r-1}}\right)^{k} P_{k+1} P_{r} . \tag{2.10}
\end{equation*}
$$

Theorem 2. For non-negative integer k, integers m and r and any integer n for which $w_{n} \neq 0$, the following identity holds:

$$
q^{n-r} e u_{r-1} \sum_{j=0}^{k} \frac{u_{m-(n+1)-k r+r j}}{\left(w_{n} / w_{n-r}\right)^{j}}=\frac{w_{m} w_{n-r}}{\left(w_{n} / w_{n-r}\right)^{k}}-w_{n} w_{m-(k+1) r} .
$$

In particular,

$$
\begin{equation*}
q^{n-r} e u_{r-1} \sum_{j=0}^{k} \frac{u_{r j}}{\left(w_{n} / w_{n-r}\right)^{j}}=\frac{w_{n+k r+1} w_{n-r}}{\left(w_{n} / w_{n-r}\right)^{k}}-w_{n} w_{n-r+1} . \tag{2.11}
\end{equation*}
$$

Proof. Write identity (1.12) as

$$
w_{m}=\frac{w_{n}}{w_{n-r}} w_{m-r}+q^{n-r} \frac{e u_{r-1}}{w_{n-r}} u_{m-n-1} .
$$

Identify $x=w_{n} / w_{n-r}, y=q^{n-r} e u_{r-1} / w_{n-r}, \alpha=r$, and $\beta=n+1$, and use these in Lemma 1.

Results for the $\left\{G_{m}\right\}$ and $\left\{P_{m}\right\}$ sequences emanating from identity (2.11) are the following:

$$
\begin{equation*}
(-1)^{n-r}\left(G_{0} G_{1}+G_{0}^{2}-G_{1}^{2}\right) F_{r} \sum_{j=0}^{k} \frac{F_{r j+1}}{\left(G_{n} / G_{n-r}\right)^{j}}=\frac{G_{n+k r+1} G_{n-r}}{\left(G_{n} / G_{n-r}\right)^{k}}-G_{n} G_{n-r+1} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{n-r-1} P_{r} \sum_{j=0}^{k} \frac{P_{r j+1}}{\left(P_{n} / P_{n-r}\right)^{j}}=\frac{P_{n+k r+1} P_{n-r}}{\left(P_{n} / P_{n-r}\right)^{k}}-P_{n} P_{n-r+1} . \tag{2.13}
\end{equation*}
$$

Lemma 2. Let $\left\{X_{m}\right\}$ be any arbitrary sequence, where $X_{m}, m \in \mathbb{Z}$, satisfies a second order recurrence relation $X_{m}=x X_{m-\alpha}+y X_{m-\beta}$, where x and y are arbitrary non-vanishing complex functions, not dependent on m, and α and β are integers. Then,

$$
\begin{equation*}
y \sum_{j=0}^{k} \frac{X_{m-k \alpha-\beta+\alpha j}}{x^{j}}=\frac{X_{m}}{x^{k}}-x X_{m-(k+1) \alpha} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
x \sum_{j=0}^{k} \frac{X_{m-k \beta-\alpha+\beta j}}{y^{j}}=\frac{X_{m}}{y^{k}}-y X_{m-(k+1) \beta}, \tag{2.15}
\end{equation*}
$$

for k a non-negative integer.
In particular,

$$
\begin{equation*}
y \sum_{j=0}^{k} \frac{X_{\alpha j}}{x^{j}}=\frac{X_{k \alpha+\beta}}{x^{k}}-x X_{\beta-\alpha} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
x \sum_{j=0}^{k} \frac{X_{\beta j}}{y^{j}}=\frac{X_{k \beta+\alpha}}{y^{k}}-y X_{\alpha-\beta} . \tag{2.17}
\end{equation*}
$$

WEIGHTED SUMS OF SOME SECOND-ORDER SEQUENCES

Proof. Identity (2.14) is a direct consequence of Lemma 1 with $Y_{m}=X_{m}$. Identity (2.15) is obtained from the symmetry of the recurrence relation by interchanging x and y and α and β.

Note that the identities (2.14) and (2.15) can be written in the following equivalent forms:

$$
\begin{equation*}
y \sum_{j=0}^{k} x^{j} X_{m-\beta-\alpha j}=X_{m}-x^{k+1} X_{m-(k+1) \alpha} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
x \sum_{j=0}^{k} y^{j} X_{m-\alpha-\beta j}=X_{m}-y^{k+1} X_{m-(k+1) \beta} . \tag{2.19}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
y \sum_{j=0}^{k} x^{j} X_{-\alpha j}=X_{\beta}-x^{k+1} X_{\beta-(k+1) \alpha} \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
x \sum_{j=0}^{k} y^{j} X_{-\beta j}=X_{\alpha}-y^{k+1} X_{\alpha-(k+1) \beta} . \tag{2.21}
\end{equation*}
$$

Theorem 3. For non-negative integer k and any integer m, the following identities hold:

$$
\begin{array}{r}
q u_{r}^{k} u_{r-1} \sum_{j=0}^{k} \frac{w_{m-k r-r-1+r j}}{u_{r}^{j}}=u_{r}^{k+1} w_{m-k r-r}-w_{m}, \quad r \in \mathbb{Z}, \quad r \neq-1, \\
u_{r-1} \sum_{j=0}^{k} \frac{w_{m-k r-r+1+r j}}{\left(-q u_{r-2}\right)^{j}}=\frac{w_{m}}{\left(-q u_{r-2}\right)^{k}}+q u_{r-2} w_{m-(k+1) r}, \quad r \in \mathbb{Z}, \quad r \neq 1, \tag{2.23}
\end{array}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{k} \frac{w_{m-k+r+j}}{\left(q u_{r-1} / u_{r}\right)^{j}}=\frac{u_{r} w_{m}}{\left(q u_{r-1} / u_{r}\right)^{k}}-q u_{r-1} w_{m-k-1}, \quad r \in \mathbb{Z}, \quad r \neq 0 \tag{2.24}
\end{equation*}
$$

In particular,

$$
\begin{gather*}
q u_{r}^{k} u_{r-1} \sum_{j=0}^{k} \frac{w_{r j}}{u_{r}^{j}}=b u_{r}^{k+1}-w_{k r+r+1}, \tag{2.25}\\
u_{r-1} \sum_{j=0}^{k} \frac{w_{r j}}{\left(-q u_{r-2}\right)^{j}}=\frac{w_{k r+r-1}}{\left(-q u_{r-2}\right)^{k}}+(a p-b) u_{r-2}, \tag{2.26}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{k} \frac{w_{j}}{\left(q u_{r-1} / u_{r}\right)^{j}}=\frac{u_{r} w_{k-r}}{\left(q u_{r-1} / u_{r}\right)^{k}}-\frac{1}{q^{r}} \frac{a u_{r+1}-b u_{r}}{a u_{r+1}+(b-p a) u_{r}} u_{r-1} w_{r+1} \tag{2.27}
\end{equation*}
$$

Proof. To prove identities (2.22) and (2.23), write the relation (1.10) as $w_{m}=u_{r} w_{m-r}-$ $q u_{r-1} w_{m-r-1}$, identify $X=w, x=u_{r}, y=-q u_{r-1}, \alpha=r$, and $\beta=r+1$, and use these in Lemma 2. Similarly, identity (2.24) is proved by writing the relation (1.10) as $w_{m}=$ $\left(1 / u_{r}\right) w_{m+r}+\left(q u_{r-1} / u_{r}\right) w_{m-1}$, identifying $X=w, x=1 / u_{r}, y=q u_{r-1} / u_{r}, \alpha=-r$, and $\beta=1$ and using these in Lemma 2.

THE FIBONACCI QUARTERLY

Explicit examples from identity (2.27) include

$$
\begin{gather*}
\sum_{j=0}^{k}(-1)^{j} \frac{G_{j}}{\left(F_{r} / F_{r+1}\right)^{j}}=(-1)^{k} \frac{F_{r+1}}{\left(F_{r} / F_{r+1}\right)^{k}} G_{k-r}-(-1)^{r} \frac{F_{r+2} G_{0}-F_{r+1} G_{1}}{F_{r+2} G_{0}+F_{r+1}\left(G_{1}-G_{0}\right)} F_{r} G_{r+1} \tag{2.28}\\
\sum_{j=0}^{k}(-1)^{j} \frac{P_{j}}{\left(P_{r} / P_{r+1}\right)^{j}}=(-1)^{k} \frac{P_{r+1} P_{k-r}}{\left(P_{r} / P_{r+1}\right)^{k}}+(-1)^{r} P_{r} P_{r+1}, \tag{2.29}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{k} \frac{(-1)^{j}}{2^{j}} \frac{J_{j}}{\left(J_{r} / J_{r+1}\right)^{j}}=\frac{(-1)^{k}}{2^{k}} \frac{J_{r+1} J_{k-r}}{\left(J_{r} / J_{r+1}\right)^{k}}+\frac{(-1)^{r}}{2^{r}} J_{r} J_{r+1} \tag{2.30}
\end{equation*}
$$

Theorem 4. For non-negative integer k and all integers r and m, the following identities hold:

$$
\begin{gather*}
\sum_{j=0}^{k} \frac{w_{m-k r+r+r j}}{\left(q^{r} / v_{r}\right)^{j}}=\frac{v_{r} w_{m}}{\left(q^{r} / v_{r}\right)^{k}}-q^{r} w_{m-(k+1) r} \tag{2.31}\\
v_{r}^{k} q^{r} \sum_{j=0}^{k} \frac{w_{m-r+r j}}{v_{r}^{j}}=v_{r}^{k+1} w_{m}-w_{m+(k+1) r} \tag{2.32}\\
v_{r} \sum_{j=0}^{k} \frac{w_{m-2 k r-r+2 r j}}{\left(-q^{r}\right)^{j}}=\frac{w_{m}}{\left(-q^{r}\right)^{k}}+q^{r} w_{m-(k+1) 2 r} \tag{2.33}\\
v_{r} \sum_{j=0}^{k} \frac{w_{m+r+2 r j}}{q^{r j}}=\frac{w_{m+2 r(k+1)}}{q^{k r}}-q^{r} w_{m} \tag{2.34}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{k}\left(-\frac{v_{r}}{q^{r}}\right)^{j} w_{m+2 r+r j}=q^{r} w_{m}+v_{r}\left(-\frac{v_{r}}{q^{r}}\right)^{k} w_{m+(k+1) r} \tag{2.35}
\end{equation*}
$$

In particular,

$$
\begin{gather*}
\sum_{j=0}^{k} \frac{w_{r j}}{\left(q^{r} / v_{r}\right)^{j}}=\frac{v_{r} w_{k r-r}}{\left(q^{r} / v_{r}\right)^{k}}-\frac{1}{q^{r}} \frac{a u_{2 r}-b u_{2 r-1}}{a u_{2 r}+(b-p a) u_{2 r-1}} w_{2 r} \tag{2.36}\\
v_{r}^{k} q^{r} \sum_{j=0}^{k} \frac{w_{r j}}{v_{r}^{j}}=v_{r}^{k+1} w_{r}-w_{(k+2) r} \tag{2.37}\\
v_{r} \sum_{j=0}^{k} \frac{w_{2 r j}}{\left(-q^{r}\right)^{j}}=\frac{w_{(2 k+1) r}}{\left(-q^{r}\right)^{k}}+\frac{a u_{r}-b u_{r-1}}{a u_{r}+(b-p a) u_{r-1}} w_{r} \tag{2.38}\\
v_{r} \sum_{j=0}^{k} \frac{w_{2 r j}}{q^{r j}}=\frac{w_{2 r k+r}}{q^{k r}}-\frac{a u_{r}-b u_{r-1}}{a u_{r}+(b-p a) u_{r-1}} w_{r} \tag{2.39}
\end{gather*}
$$

and

$$
\begin{equation*}
q^{r} \sum_{j=0}^{k}\left(-\frac{v_{r}}{q^{r}}\right)^{j} w_{r j}=\frac{a u_{2 r}-b u_{2 r-1}}{a u_{2 r}+(b-p a) u_{2 r-1}} w_{2 r}+q^{r} v_{r}\left(-\frac{v_{r}}{q^{r}}\right)^{k} w_{k r-r} \tag{2.40}
\end{equation*}
$$

Proof. To prove identities (2.31) and (2.32), write identity (1.11) as $w_{m}=\left(1 / v_{r}\right) w_{m+r}+$ $\left(q^{r} / v_{r}\right) w_{m-r}$. Identify $X=w, x=1 / v_{r}, y=q^{r} / v_{r}, \alpha=-r$, and $\beta=r$, and use these in Lemma 2, identities (2.15) and (2.18). Likewise, to prove identity (2.34), write identity (1.11) as $q^{r} w_{m}=w_{m+2 r}-v_{r} w_{m+r}$. Identify $X=w, x=1 / q^{r}, y=-v_{r} / q^{r}, \alpha=-2 r$, and $\beta=-r$, and use these in Lemma 2, identity (2.18).
Lemma 3. Let $\left\{X_{m}\right\}$ be any arbitrary sequence. Let $X_{m}, m \in \mathbb{Z}$, satisfy a second order recurrence relation $X_{m}=x X_{m-\alpha}+y X_{m-\beta}$, where x and y are non-vanishing complex functions, not dependent on m, and α and β are integers. Then,

$$
\sum_{j=0}^{k}\binom{k}{j}\left(\frac{x}{y}\right)^{j} X_{m-k \beta+(\beta-\alpha) j}=\frac{X_{m}}{y^{k}},
$$

for k a non-negative integer.
In particular,

$$
\begin{equation*}
\sum_{j=0}^{k}\binom{k}{j}\left(\frac{x}{y}\right)^{j} X_{(\beta-\alpha) j}=\frac{X_{k \beta}}{y^{k}} . \tag{2.41}
\end{equation*}
$$

Proof. We apply mathematical induction on k. Obviously, the lemma is true for $k=0$. We assume that it is true for $k=n$ a positive integer. The induction hypothesis is

$$
\mathcal{P}_{n}:\left(f(n)=\frac{X_{m}}{y^{n}}\right) ;
$$

where

$$
f(n)=\sum_{j=0}^{n}\binom{k}{j}\left(\frac{x}{y}\right)^{j} X_{m-n \beta+(\beta-\alpha) j} .
$$

We want to prove that $\mathcal{P}_{n} \Rightarrow \mathcal{P}_{n+1}$. We proceed,

$$
\begin{aligned}
f(n+1) & =\sum_{j=0}^{n+1}\binom{n+1}{j}\left(\frac{x}{y}\right)^{j} X_{m-n \beta-\beta+(\beta-\alpha) j} \\
& \left(\text { since }\binom{n+1}{j}=\binom{n}{j}+\binom{n}{j-1}\right) \\
& =\sum_{j=0}^{n+1}\binom{n}{j}\left(\frac{x}{y}\right)^{j} X_{m-n \beta-\beta+(\beta-\alpha) j}+\sum_{j=0}^{n+1}\binom{n}{j-1}\left(\frac{x}{y}\right)^{j} X_{m-n \beta-\beta+(\beta-\alpha) j} \\
& =\sum_{j=0}^{n+1}\binom{n}{j}\left(\frac{x}{y}\right)^{j} X_{m-n \beta-\beta+(\beta-\alpha) j}+\sum_{j=1}^{n+1}\binom{n}{j-1}\left(\frac{x}{y}\right)^{j} X_{m-n \beta-\beta+(\beta-\alpha) j} \\
& =\sum_{j=0}^{n}\binom{n}{j}\left(\frac{x}{y}\right)^{j} X_{m-n \beta-\beta+(\beta-\alpha) j}+\frac{x}{y} \sum_{j=0}^{n}\binom{n}{j}\left(\frac{x}{y}\right)^{j} X_{m-n \beta-\beta+(\beta-\alpha)(j+1)} \\
& =\sum_{j=0}^{n}\binom{n}{j}\left(\frac{x}{y}\right)^{j}\left(X_{m-n \beta-\beta+(\beta-\alpha) j}+\frac{x}{y} X_{m-n \beta-\beta+(\beta-\alpha)(j+1)}\right) \\
& =\frac{1}{y} \sum_{j=0}^{n}\binom{n}{j}\left(\frac{x}{y}\right)^{j}\left(x X_{m-n \beta-\beta+(\beta-\alpha)(j+1)}+y X_{m-n \beta-\beta+(\beta-\alpha) j}\right)
\end{aligned}
$$

THE FIBONACCI QUARTERLY

$$
\begin{aligned}
& \left(\text { since } x X_{m-n \beta-\beta+(\beta-\alpha)(j+1)}+y X_{m-n \beta-\beta+(\beta-\alpha) j}=X_{m-n \beta+(\beta-\alpha) j}\right) \\
& =\frac{1}{y} \sum_{j=0}^{n}\binom{n}{j}\left(\frac{x}{y}\right)^{j} X_{m-n \beta+(\beta-\alpha) j} \\
& =\frac{1}{y} \frac{X_{m}}{y^{n}} \quad \text { (by the induction hypothesis) }
\end{aligned}
$$

Thus,

$$
f(n+1)=\frac{X_{m}}{y^{n+1}}
$$

so that

$$
\mathcal{P}_{n+1}:\left(f(n+1)=\frac{X_{m}}{y^{n+1}}\right)
$$

i.e. $\mathcal{P}_{n} \Rightarrow \mathcal{P}_{n+1}$ and the induction is complete.

Note that the identity of Lemma 3 can also be written as

$$
\begin{equation*}
\sum_{j=0}^{k}\binom{k}{j}\left(\frac{y}{x}\right)^{j} X_{m-k \alpha+(\alpha-\beta) j}=\frac{X_{m}}{x^{k}} \tag{2.42}
\end{equation*}
$$

with the particular case

$$
\begin{equation*}
\sum_{j=0}^{k}\binom{k}{j}\left(\frac{y}{x}\right)^{j} X_{(\alpha-\beta) j}=\frac{X_{k \alpha}}{x^{k}} \tag{2.43}
\end{equation*}
$$

Theorem 5. For non-negative integer k and any integer m, the following identities hold:

$$
\begin{gather*}
\left(-q u_{r-1}\right)^{k} \sum_{j=0}^{k}\binom{k}{j}\left(-\frac{u_{r}}{q u_{r-1}}\right)^{j} w_{m-k(r+1)+j}=w_{m}, \quad r \in \mathbb{Z}, \quad r \neq 0 \tag{2.44}\\
\sum_{j=0}^{k}\binom{k}{j} \frac{w_{m-k+r j}}{\left(q u_{r-2}\right)^{j}}=\left(\frac{u_{r-1}}{q u_{r-2}}\right)^{k} w_{m}, \quad r \in \mathbb{Z}, \quad r \neq 1 \tag{2.45}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \frac{w_{m+k+r j}}{u_{r}^{j}}=\left(\frac{q u_{r-1}}{u_{r}}\right)^{k} w_{m}, \quad r \in \mathbb{Z}, \quad r \neq-1 \tag{2.46}
\end{equation*}
$$

In particular,

$$
\begin{gather*}
\left(-q u_{r-1}\right)^{k} \sum_{j=0}^{k}\binom{k}{j}\left(-\frac{u_{r}}{q u_{r-1}}\right)^{j} w_{j}=w_{k(r+1)} \tag{2.47}\\
\sum_{j=0}^{k}\binom{k}{j} \frac{w_{r j}}{\left(q u_{r-2}\right)^{j}}=\left(\frac{u_{r-1}}{q u_{r-2}}\right)^{k} w_{k} \tag{2.48}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \frac{w_{r j}}{u_{r}^{j}}=\left(\frac{u_{r-1}}{u_{r}}\right)^{k} \frac{a u_{k}-b u_{k-1}}{a u_{k}+(b-p a) u_{k-1}} w_{k} \tag{2.49}
\end{equation*}
$$

WEIGHTED SUMS OF SOME SECOND-ORDER SEQUENCES

Proof. To prove identity (2.44), use, in Lemma 3, the x, y, α, and β found in the proof of identities (2.22) and (2.23) of Theorem 3. To prove identity (2.45), use in Lemma 3, the x, y, α, and β found in the proof of identity (2.24) of Theorem 3. To prove identity (2.46), write the relation (1.10) as $w_{m}=-\left(1 /\left(q u_{r-1}\right)\right) w_{m+r+1}+\left(u_{r} /\left(q u_{r-1}\right)\right) w_{m+1}$. Identify $X=w$, $x=-\left(1 /\left(q u_{r-1}\right)\right), y=\left(u_{r} /\left(q u_{r-1}\right)\right), \alpha=-1-r$, and $\beta=-1$, and use these in Lemma 3 .

We have the following specific examples from identity (2.48):

$$
\begin{align*}
& \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \frac{G_{r j}}{F_{r-1}^{j}}=(-1)^{k}\left(\frac{F_{r}}{F_{r-1}}\right)^{k} G_{k}, \tag{2.50}\\
& \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \frac{P_{r j}}{P_{r-1}^{j}}=(-1)^{k}\left(\frac{P_{r}}{P_{r-1}}\right)^{k} P_{k}, \tag{2.51}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{k} \frac{(-1)^{j}}{2^{j}}\binom{k}{j} \frac{J_{r j}}{J_{r-1}^{j}}=\frac{(-1)^{k}}{2^{k}}\left(\frac{J_{r}}{J_{r-1}}\right)^{k} J_{k} . \tag{2.52}
\end{equation*}
$$

Note that identity (2.44) is a generalization of identity (48) of Vajda [4], the latter being the evaluation of the former at $r=1$ and $q=-1$.

Theorem 6. For non-negative integer k and all integers m and r, the following identities hold:

$$
\begin{gather*}
\sum_{j=0}^{k}\binom{k}{j} \frac{w_{m-k r+2 r j}}{q^{r j}}=\left(\frac{v_{r}}{q^{r}}\right)^{k} w_{m}, \tag{2.53}\\
\sum_{j=0}^{k}\binom{k}{j}\left(-\frac{v_{r}}{q^{r}}\right)^{j} w_{m-2 k r+r j}=\frac{w_{m}}{\left(-q^{r}\right)^{k}}, \tag{2.54}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \frac{w_{m+k r+r j}}{v_{r}^{j}}=(-1)^{k} \frac{q^{r k} w_{m}}{v_{r}^{k}} . \tag{2.55}
\end{equation*}
$$

In particular,

$$
\begin{gather*}
\sum_{j=0}^{k}\binom{k}{j} \frac{w_{2 r j}}{q^{r j}}=\left(\frac{v_{r}}{q^{r}}\right)^{k} w_{r k}, \tag{2.56}\\
\sum_{j=0}^{k}\binom{k}{j}\left(-\frac{v_{r}}{q^{r}}\right)^{j} w_{r j}=\frac{w_{2 k r}}{\left(-q^{r}\right)^{k}}, \tag{2.57}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \frac{w_{r j}}{v_{r}^{j}}=(-1)^{k}\left(\frac{a u_{k r}-b u_{k r-1}}{a u_{k r}+(b-p a) u_{k r-1}}\right) \frac{w_{k r}}{v_{r}^{k}} . \tag{2.58}
\end{equation*}
$$

Proof. To prove identity (2.53), use, in Lemma 3, the x, y, α, and β found in the proof of identities (2.31) and (2.32) of Theorem 4. To prove identity (2.54), write identity (1.11) as $w_{m}=v_{r} w_{m-r}-q^{r} w_{m-2 r}$. Identify $X=w, x=v_{r}, y=-q^{r}, \alpha=r$, and $\beta=2 r$, and use these in Lemma 3. To prove identity (2.55), use, in Lemma 3, the x, y, α, and β found in the proof of identity (2.34) of Theorem 4.

THE FIBONACCI QUARTERLY

Setting $p=1=-q$ in identity (2.53), we have

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{r j}\binom{k}{j} G_{m-k r+2 r j}=(-1)^{r k} L_{r}^{k} G_{m} \tag{2.59}
\end{equation*}
$$

Identity (2.58) at $p=1=-q$ gives

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \frac{G_{r j}}{L_{r}^{j}}=(-1)^{k} \frac{F_{k r+1} G_{0}-F_{k r} G_{1}}{F_{k r+1} G_{0}+F_{k r}\left(G_{1}-G_{0}\right)} \frac{G_{k r}}{L_{r}^{k}} \tag{2.60}
\end{equation*}
$$

3. Acknowledgement

I thank the anonymous referee whose comments helped to improve this paper.

References

[1] A. F. Horadam, A generalized Fibonacci sequence, The American Mathematical Monthly, 68.5 (1961), 455-459.
[2] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3.3 (1965), 161-176.
[3] P. Stanica, Generating functions, weighted and non-weighted sums for powers of second order recurrence sequences, The Fibonacci Quarterly, 41.4 (2003), 321-333.
[4] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Press, 2008.

MSC2010: 11B37, 11B39, 65B10
Department of Physics and Engineering Physics, Obafemi Awolowo University, 220005 Ile-Ife, Nigeria

E-mail address: adegoke00@gmail.com

