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Abstract. After a brief history of complementary equations, a definition is given for linear
complementary equations, with particular attention to examples typified by an = an−1 +
an−2 + bn, where (bn) is the complement of (an) in the set N of positive integers, and

an/an−1 → (1 +
√

5)/2. Also introduced are systems of equations whose solutions are se-
quences that partition N. An example is the system defined recursively by an = least new k,
bn = least new k, and cn = an + bn, where “least new k”, also known as “mex”, is the least
integer in N not yet placed. The sequence (cn) in this example is the anti-Fibonacci sequence,
A075326 in the Online Encyclopedia of Integer Sequences.

1. Introduction

Two sequences (an) and (bn) are called complementary if they partition the set N of positive
integers. Perhaps the history of such sequences dates back to the discovery of odd numbers and
even numbers, but the present account jumps to the twentieth century when W. A. Wythoff,
in his introduction to what is now called the Wythoff game, defined sequences that are now
called the lower and upper Wythoff sequences. The first ten terms of these sequences appear
in the final two rows of Table 1:

Table 1. lower and upper Wythoff sequences
n 1 2 3 4 5 6 7 8 9 10
an 1 3 4 6 8 9 11 12 14 16
bn 2 5 7 10 13 15 18 20 23 26

Here are the rules: an is always the least positive integer not yet in the final two rows, and

bn = an + n. (1.1)

This way of generating sequences illustrates two basic ideas for introducing the subject of
complementary equations; first, “least positive integer not yet used”, known as “mex”, for
minimal excludant, provides a natural way to account for—or construct—complementary se-
quences. (Aviezri Fraenkel [3] notes that the term “mex” may have originated with John H.
Conway.) Second, (1.1) exemplifies a complementary equation; that is, an equation whose
solution consists of sequences that partition N. Except where otherwise stated (e.g., [1]) it is
required that the solution sequences of a complementary equation be increasing. Under these
conditions, certain historical examples having notable unique solutions were known before the
term “complementary equation” gained currency sometime after 2001. Table 2 shows five of
these, with solutions given by A-numbers as in OEIS [8].
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Table 2. Historic complementary equations and solutions
bn = an + 1 (an) = A005408 (bn) = A005843 odds and evens
bn = an + n (an) = A000201 (bn) = A001950 Wythoff sequences
bn = aan (an) = A000201 (bn) = A001950 Wythoff sequences

an = an−1 + bn−1 (an) = A005228 (bn) = A030124 [4], 1980
an = bn−1 + bn−2 (an) = A022424 (bn) = A055563 [1], 2007

Section 2 gives a definition of linear complementary equations in terms of complementary
sequences (an) and (bn) and discusses limiting ratios such as limn→∞ an/an−1. Sections 2, 3,
and 4 consider linear complementary equations of orders 0, 1, and 2, respectively. Sections 4
and 5 give matrix representations for solution sequences of certain complementary equations of
orders 1 and 2. Section 6 introduces the notion of a system of complementary equations, using
the anti-Fibonacci system as a basis for generalizations to anti-m-nacci systems and others.
Section 7 gives tables for locating solutions in OEIS of complementary equations, including a
few that are not linear. Section 8 gives notes regarding Mathematica codes used to generate
solutions to complementary equations.

When dealing with a complementary—or possibly complementary—equation, a distinction
must be made between having a priori solutions, as opposed to using the equation to construct
possible solutions. It is easy to create equations that generate pairs (an) and (bn) that start
out looking complementary but are not so. Section 3 includes a code that tests a certain class
of user-input sequences for complementarity.

2. Linear Complementary Equations

By a linear complementary equation, we mean an equation of the form

an = u(an−1, . . . , an−k) + v(bmn , . . . , b0) + fn (2.1)

where

u(an−1, . . . , an−k) = u0an−1 + u1an−2 + · · ·+ uk−1an−k (2.2)

and

v(bmn , . . . , b0) = v0bmn + v1bmn−1 + · · ·+ vmnb0, (2.3)

where (an) and (bn) are complementary, (an) and (bn) are strictly increasing, (fn) is an integer
sequence, and (mn) is an increasing sequence in N.

The order of the equation (2.1) is defined from (2.2) as 0 if k = 1 and u0 = 0; otherwise,
the order is k. Note that an equation of a particular order may be equivalent to an equation
of a different order; e.g., the equations an = bn + bn−1 + · · ·+ b0 and an = an−1 + bn are clearly
equivalent.

In this section, we are especially interested in limiting behaviors of an/an−1 and bn/n, as
given by Theorem 2.1.

Theorem 2.1. Suppose that (an) and (bn) are solution sequences of a complementary equation

an = c1an−1 + c2an−2 + · · ·+ ckan−k +Dn

for which the following conditions hold:

(i) c1, c2, . . . , ck are integers, where k is a fixed positive integer, such that the polynomial
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xk − c1xk−1 − · · · − ck
has a (possibly repeated) real root r > 1, and all the other roots z (if any) satisfy |z| < 1.

(ii) limn→∞ an/an−1 exists;

(iii) Dn = djbn−j + dj−1bn−j+1 + . . .+ d0bn + un+ v, where u and v are integers, j is a fixed
nonnegative integer, and the j + 1 numbers di are integers such that Dn > 0 for n ≥ 0;

(iv) There exists m in N such that bm < 2m and aq+1 − aq > 1 for all q ≥ m.

Then

lim
n→∞

Dn

n
= d0 + d1 + · · ·+ dj + u (2.4)

and

lim
n→∞

an
an−1

= r. (2.5)

Before proving Theorem 2.1, we state and prove three lemmas.

Lemma 2.2. Assuming the hypothesis of Theorem 2.1, an ≥ rn for all n ≥ 0.

Proof. Starting with a0 ≥ 1, suppose for arbitrary h that ai ≥ ri for i = 0, . . . , h. Then

ah+1 = c1ah + c2ah−1 + · · ·+ ckah+1−k +Dh+1

≥ c1ah + c2ah−1 + · · ·+ ckah+1−k

≥ c1rh + c2r
h−1 + · · ·+ ckr

h+1−k

= rh+1−k(c1r
k−1 + c2r

k−2 + · · ·+ ck)

= rh+1−k · rk

= rh+1.

�

Lemma 2.3. Assuming the hypothesis of Theorem 2.1, there exists m in N such that bn < 2n
for all n ≥ m.

Proof. Recalling (iv), assume as an induction hypothesis that bh < 2h for arbitrary h ≥ m.
Now, either bh + 1 is a term of (an), in which case bh+1 = bh + 2, or else bh + 1 is not a term
of (an), in which case bh+1 = bh + 1. In both cases, bh+1 ≤ 2h+ 2 = 2(h+ 1). �

Lemma 2.4. Assuming the hypothesis of Theorem 2.1, limn→∞C(ah, bn)/n = 0, where
C(x(h), y) denotes the number of indices h such that x(h) < y.

Proof. By Lemmas 2.2 and 2.3, for n ≥ m,
1

n
C(ah, bn) ≤ 1

n
C(ah, 2n)

≤ 1

n
C(rh, 2n)

≤ 1

n
C(h, logr 2n)

≤ 1

n
logr 2n,
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so that limn→∞(1/n)C(ah, bn) = 0. To prove (2.4), it suffices to prove that limn→∞ bh/n = 1
for h = n− j, n− j + 1, . . . , n. Now, for these h, we have

lim
n→∞

bh
n

= lim
n→∞

bh
h

h

n
= lim

n→∞

bn
n
,

so that it suffices to prove that limn→∞ bn/n = 1. To that end, we have

bn = n+ C(ah, bn) + 1,

bn
n

= 1 +
1

n
C(ah, bn) +

1

n
,

so that limn→∞ bn/n = 1. To prove (2.5), we have

an
an−1

= c1 + c2
an−2
an−1

+ · · ·+ ck
an−k
an−1

+
Dn

an−1
.

Also,

lim
n→∞

Dn

an−1
= lim

n→∞

Dn

n

n

an−1
≤ lim

n→∞

d0 + d1 + · · ·+ dj + u

n
= 0,

so that, letting t = limn→∞ an/an−1, we have

t = c1 +
c2
t

+ · · ·+ ck
tk−1

,

whence t is a zero of the polynomial

xk − c1xk−1 − c2xk−2 − · · · − ck = 0

in (i). Clearly t is a real number. If t < 1, then for large enough n, we have |an/an−1−t| < 1−t,
but then an < an−1, contrary to (iv). Therefore, t = r. �

Example 1. Let an = 4an−1 − 4an−2 + bn, with initial values a0 = 1, a1 = 2. The polynomial
in Theorem 2.1 is x2 − 4x+ 4 = (x− 2)2, so that, by Theorem 2.1, limn→∞ an/an−1 = 2. See
Section 8 for a code.

Example 2. Let an = 4an−1−4an−2+bn−2, with initial values a0 = 1, a1 = 2. The polynomial
in Theorem 2.1 is x2 − 4x + 4, as in Example 1, so that limn→∞ an/an−1 = 2. See Section 8
for two codes.

Example 3. Let an = an−2 + an−3 + bn, with initial values a0 = 1, a1 = 2, a2 = 3. The
polynomial in Theorem 2.1 is x3 − x − 1, with roots −0.6623589 . . . ± (0.5622795 . . .)i and
1.324717957 . . . . By Theorem 2.1, limn→∞ an/an−1 = 1.324717957 . . . . It appears that the
sequence (an/an−1) is strictly decreasing beginning at n = 18.

3. Linear Complementary Equations of Order 0

Here we consider linear complementary equations of the form

an = v0bn + v1bn−1 + · · ·+ vnb0.

Lemma 3.1. Suppose that (an) and (bn) are complementary sequences. Let α∗ and α∗ be,
respectively, the lower and upper asymptotic density of the set {an}, and let β∗ and β∗ be,
respectively, the lower and upper asymptotic density of the set {bn}. Then

α∗ + β∗ = α∗ + β∗ = 1.
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Proof. We begin with standard definitions: α∗ = lim infn→∞An/n, where An is the number
of terms ak that are ≤ n, and β∗ = lim supn→∞Bn/n, where Bn is the number of terms bk
that are ≥ n. Suppose that α∗ + β∗ 6= 1.

Case 1: β∗ < 1 − α∗. Let ε > 0 satisfy β∗ < ε < α∗. Let ni be a sequence such that
Ani/ni → α∗. For large enough i, we have β∗ < ε < 1−Ani/ni, so that β∗ < ε < 1−(1−Bni/ni),
whence β∗ < ε < Bni/ni for infinitely many ni, contrary to the definition of β∗.

Case 2: β∗ > 1 − α∗. Let ε > 0 satisfy β∗ > ε > 1 − α∗. Let nj be a sequence such that
Bnj/nj → β∗. Then for infinitely many j,, we have Bnj/nj > ε > 1 − α∗. Consequently,
1−Anj/nj > ε > 1−α∗, which implies Anj/nj < 1− ε < α∗, contrary to the definition of α∗.

Therefore, α∗ + β∗ = 1. The method of proof shows also that α∗ + β∗ = 1. �

Theorem 3.2. Suppose that vj , vj+1, . . . , vk, q, and r are integers such that q + v > 1, where
v = vj + vj+1 + · · ·+ vk. Suppose that complementary sequences (an) and (bn) satisfy

an = qn+ r + vjbmn−j + vj+1bmn−j−1 + vkbmn−k, (3.1)

where mn ≥ n.
If q = 0, then limn→∞ an/n = 1/(v + 1) and limn→∞ bn/n = v/(v + 1). If q 6= 0, then

lim
n→∞

an
n

=
q + v + 1 +

√
(q + v + 1)2 − 4q

2q
, (3.2)

lim
n→∞

bn
n

=
q + v − 1 +

√
(q + v + 1)2 − 4q

2v
. (3.3)

Proof. Following Pietro Majer [7], let α∗ and α∗ be as in Lemma 3.1, so that

lim sup
n→∞

an
n

= 1/α∗ , lim inf
n→∞

an
n

= 1/α∗,

lim sup
n→∞

bn
n

= 1/β∗ , lim inf
n→∞

bn
n

= 1/β∗ ,

where α∗ + β∗ = α∗ + β∗ = 1, by Lemma 3.1. By (3.1),

an
n

= q +
r

n
+ vj

bn−j
n

+ · · · vk
bn−k
n

,

so that

lim inf
n→∞

a(n)

n
≥ q + lim inf

n→∞
vj
bn−j
n

+ · · ·+ lim inf
n→∞

vk
bn−k
n

, (3.4)

whence q + v/β∗ ≤ 1/α∗. Substituting 1− α∗ for β∗ then yields

qα∗(1− α∗) + vα∗ + α∗ ≤ 1. (3.5)

Similarly,
1 ≤ qα∗(1− α∗) + vα∗ + α∗, (3.6)

so that

qα∗ − qα∗α∗ + vα∗ + α∗ ≤ qα∗ − qα∗α∗ + vα∗ + α∗

(q + v − 1)α∗ ≤ (q + v − 1)α∗

α∗ ≤ α∗.
As we also have α∗ ≥ α∗, it follows that α∗ = α∗, so that lim an/n exists and equals α∗, and
lim bn/n exists and equals β∗.
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If q = 0, then (3.5) and (3.6) yield α∗ = 1/(v + 1) and β∗ = v/(v + 1). If q 6= 0, then (3.5)
and (3.6) yield

qα∗(1− α∗) + vα∗ + α∗ = 1, (3.7)

from which (3.2) and (3.3) follow. �

Example 4. For an = bn−1 + bn−2, with a0 = 1, a1 = 1, we have limn→∞ an/n = 1/3, and we
conjecture that for every n ≥ 0, the set {3n− 1− an : n ≥ 0} is simply {0, 1, 2}; see A022424.

Example 5. For an = n+ bn−1 + bn−2 with a0 = 1, a1 = 6, we have limn→∞ an/n = 2 +
√

3
and limn→∞ bn/n = (1 +

√
3)/2.

As mentioned in the Introduction, we include here a code that enables complementarity
testing for a certain class of (possibly) complementary equations.

mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);

test[sum_, n_] :=

Module[{a = {}, b = {1}, fVals}, Map[(fVals = sum[#];

Do[AppendTo[b,

mex[Flatten[{a, b}], Last[b]]], {Max[fVals] - Length[b] + 1}];

AppendTo[a, Total[Map[b[[1 + #]] &, fVals]]]) &, Range[n] - 1];

{If[Position[Differences[Sort[Flatten[{a, b}]]], 0, 1] == {},

"Complementary so far",

"Not Complementary " <>

ToString[Flatten[Split@Sort@a, {2}][[2]]] <> " repeated"], {a, b}}]

(* Following are sample inputs for 100 terms of $(a_n)$ and $(b_n).$ *)

test[{#, 1} &, 100]

test[{#, #} &, 100]

test[{#, #, #} &, 100]

test[{#, Floor[#/2]} &, 100]

test[{#, Floor[#/2] - Floor[#/3]} &, 100]

The code above tests five pairs of complementary sequences (an) and (bn), with initial value
b0 = 1, and other values determined by the five lines of input that each start with “test”.
Following are translations of the inputs, along with outputs:

test[{#, 1} &, 100]

is the input for an = bn + b1. The output consists of 100 terms of sequences A014601 and
A042963, with “Complementary so far”. This seems like a good example for showing how the
first few values are determined: b0 = 1 by decree, and then a0 must be b0 + b1, which must
exceed 3, so that b1 must be 2, so that a0 must be 3. Then a1 must be b1 + b1 = 4. Then the
requirement that a2 = b2 + b1 forces a2 to be at least 7, implying that b2 = 5, b3 = 6, and
a2 = 7, and so on.

test[{#, #} &, 100]

is the input for an = bn + bn. Output: A036554 and A003159 .

test[{#, #, #} &, 100]

is the input for an = 3bn. Output: A145204 and A007417.
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test[{#, Floor[#/2]} &, 100]

is the input for an = bn + bbn/2c. Output: A304451 and A304452.

test[{#, Floor[#/2] - Floor[#/3]} &, 100]

is the input for an = bn + bbn/2c − bbn/3c. Output: Not Complementary, followed by a list of
numbers in both sequences: 58, 98, 137, 148, 184.

4. Linear Complementary Equations of Order 1

Here we consider first-order complementary equations of the form

an = can−1 + v0bn + v1bn−1 + · · ·+ vnb0.

Clearly, for n ≥ 2, the general term an can be expressed in terms of a0 and the sequences (bn)
and (vn). In order to determine this dependence explicitly, we start with

a1 = ca0 + v0b1 + v1b0, (4.1)

and continue inductively,

an =cna0 + v0bn + (cv0 + v1)bn−1 + (c2v0 + c1v1 + v2)bn−2

+ · · ·+ (cn−2v0 + cn−3v1 + · · ·+ vn−2)b2

+ · · ·+ (cn−1v0 + cn−2v1 + · · ·+ vn−1)b1

+ · · ·+ (cn−1v1 + cn−2v2 + · · ·+ vn)b0.

This result can be written as a sum:

an = cna0 + y0n + y1n + · · ·+ ynn,

where yin, for n ≥ 1 and i = 0, 1, . . . , n are given by the matrix equation Y = BV C, where

Y = (y0n, y1n, . . . , ynn)tr,

B =


b0 0 0 · · · 0
0 b1 0 · · · 0
0 0 b2 · · · 0
...

...
...

. . .
...

0 0 0 · · · bn



V =



v1 v2 v3 v4 · · · vn−1 vn
v0 v1 v2 v3 · · · vn−2 vn−1
0 v0 v1 v2 · · · vn−3 vn−2
0 0 v0 v1 · · · vn−4 vn−3
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 v0


C = (cn−1, cn−2, . . . c, 1, 1)tr.

Note the dimensions of the matrices in the product BV C : (n+ 1, n+ 1)× (n+ 1, n)× (n, 1).

Example 6. If an = an−1 + bn, with initial value a0 = 1, then (an) = (1, 4, 9, 15, 22, 30, . . .) =
A022443.
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Example 7. If an = 2an−1 + bn + bn−1, with initial value a0 = 1, then

(an) = (1, 7, 21, 51, 113, 240, 497, . . .).

5. Linear Complementary Equations of Order 2

Here we consider second-order complementary equations of the form

an = can−1 + dan−2 + v0bn + v1bn−1 + · · ·+ vnb0.

In order to obtain a matrix representation for an that depends on a0 and a1, we call upon the
generalized (c, d)-Fibonacci polynomials Un = Un(c, d), defined as follows: U0 = 0, U1 = 1,
and Un = cUn−1 + dUn−2. We have

a3 = ca2 + da1 + v0b2 + v1b1 + v2b0) + da1 + v0b3 + x1b2 + v2b1 + v3b0

= a1U3 + a0dU2 + v0b3 + (v0U2 + v1U1)b2 + (v1U2 + v2U1)b1 + (v2U2 + v3U1)b0.

Continuing, we reach a representation for an as a linear combination, similar to that in the
preceding section:

an = a1Un + a0dUn−1 + y0n + y1n + · · ·+ ynn,

where Y and B are as in Section 4, Y = BV U, where

V =



v2 v3 v4 · · · vn
v1 v2 v3 · · · vn−1
v0 v1 v2 · · · vn−2
0 v0 v1 · · · vn−3
...

...
...

. . .
...

0 0 0 · · · v0


and

U = (Un−1, Un−2, . . . , U2, U1)
tr.

Note the dimensions of the matrices in the product BV U : (n+1, n+1)×(n+1, n−1)×(n−1, 1).

Example 8. If an = an−1 + an−2 + bn, with initial values a0 = 1, a1 = 2, then (an) =
(1, 2, 8, 16, 31, 56, . . .) = A295949. Here, (an/an−1) converges rapidly to the golden ratio.

Example 9. If an = an−1+an−2+b0+b1+· · ·+bn−1, with initial values a0 = 1, a1 = 2, a2 = 3,
then (an) = (1, 2, 10, 24, 52, 101, . . .) = A295053.

For many choices of (vn), the sum

Vn = v0bn + v1bn−1 + · · ·+ vnb0

stays small enough that limn→∞ Vn/an−1 = 0. In such a case, we find from

an/an−1 = c+ dan−2/an−1 + Vn/an−1

and r = limn→∞ an/an−1, that r = c + d/r, so that r = (c +
√
c2 + 4d)/2. The closeness of

an/an−1 to r and of an to rn are measured by the ratio-sum,
∞∑
n=1

|an/an−1 − r|

and the limiting power ratio, limn→∞ an/r
n, respectively. Table 4 shows a few examples for

the complementary equation an = an−1 + an−2 + bn. The first column gives initial values in
abbreviated form; e.g. “1, 3; 2, 4, 5” means that a0 = 1, a1 = 3; b0 = 2, b1 = 4, b2 = 5.
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Table 3. Ratio-sums and limiting power ratios
initial values ratio-sum limiting power ratio

1, 2; 3, 4, 5 3.975789 . . . 6.136385 . . .
1, 3; 2, 4, 5 6.210327 . . . 6.514710 . . .
1, 4; 2, 3, 5 4.289969 . . . 6.920208 . . .
1, 5; 2, 3, 4 4.845853 . . . 7.090700 . . .
2, 3; 1, 4, 5 2.571971 . . . 6.749918 . . .
2, 4; 1, 3, 5 2.427179 . . . 7.171351 . . .
3, 4; 1, 2, 5 1.916978 . . . 7.432138 . . .

If r = 1, the hypothesis of Theorem 2.1 fails, although the conclusion appears to be valid.
Example 10 shows what can happen.

Example 10. If an = 2an−1 − an−2 + bn with initial values a0 = 1, a1 = 2, then (an) =
(1, 2, 8, 20, 39, 67, . . .) = A305129. Here, the ratio-sum and limiting power ratio are both
infinite. We conjecture that the 3rd difference sequence of (an) consists entirely of 1s and 2s.

6. Anti-Fibonacci system of complementary equations and generalizations

The anti-Fibonacci sequence, A075326, is the solution (cn) for the following system of three
complementary equations: an = mex, bn = mex, cn = an + bn; specifically,

an = mex({a0, . . . , an−1, b0, . . . , bn−1, c0, . . . , cn−1}),
bn = mex({a0, . . . , an−1, an, b0, . . . , bn−1, c0, . . . , cn−1}).

The sequences (an), (bn), (cn) partition N and start out as in Table 4. (Each of the three
equations is a complementary equation in the sense that its solution sequence, as a set, is
complementary to the union of solution sets of the other two equations.)

Table 4. Sequences (an), (bn), (cn)
n 0 1 2 3 4 5 6 7 8
an 1 4 6 8 11 14 16 19 21
bn 2 5 7 10 12 15 17 20 22
cn 3 9 13 18 23 29 33 39 43

Another, perhaps surprising, way to generate the anti-Fibonacci sequence (cn) stems from
observing that its difference sequence, specifically

(∆cn) = (6, 4, 5, 5, 6, 4, 6, 4, 6, 4, 5, 5, 6, 4, 5, 5, . . .),

regarded as a word, consists of concatenated blocks 55 and 64. Substituting 0 for 55 and 1 for
64 gives

A035263 : 101110101011101110111 · · · ,
which appears to be the fixed word of the morphism {0→ 11, 1→ 10} applied to 1 :

1→ 10→ 1011→ 10111010→ 1011101010111011→ · · · .
Reversing the procedure, we can generate (cn) as in the following Mathematica code:

Accumulate[

Prepend[Flatten[

Nest[Flatten[# /. {0 -> {1, 1}, 1 -> {1, 0}}] &, {0}, 7] /.

Thread[{0, 1} -> {{5, 5}, {6, 4}}]], 3]]
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We confirmed that this code generates at least the first 16,000 terms of the sequence (cn).

The anti-Fibonacci system generalizes to an anti-tribonacci system (c.f. A265389), in the
obvious manner: an = mex, bn = mex, cn = mex, dn = an + bn + cn. These four sequences
partition N, and the anti-tribonacci sequence,

(dn) = (6, 16, 27, 36, 46, 57, 66, 75, 87, 96, 101, . . .)

can be generated from its difference sequence,

∆(dn) = (10, 11, 9, 10, 11, 9, 9, 12, 9, 10, 11, 9, . . .). (6.1)

To see how this works, substitute

9→ 1, 10→ 2, 11→ 3, 12→ 4

into (6.1) and write the result as the word

231231141231231141231321131 · · · . (6.2)

Then put A = 114, B = 123, C = 132, so that (6.2) gives

23BABBABCABBABBABCABBA · · · .
Next, substitute 23→ 1, A→ 0, B → 1, C → 2 to get

1101101201101101201101001 · · · ,
which, we conjecture, is the fixed point of the morphism

{0→ 120, 1→ 110, 2→ 100}
applied to 1.

This procedure for generating (the first 1,594,232 terms of) the fixed point is performed by
the following code:

Nest[Flatten[# /. {0 -> {1, 2, 0}, 1 -> {1, 1, 0},

2 -> {1, 0, 0}}] &, {0}, 13];

For a generalization to the anti-tetranacci sequence, see A299405, and to push even further
in this direction, for m ≥ 2, define the anti-m-nacci sequence (am(n)), as follows: let ai(n) =
mex for i = 1, 2, . . . ,m− 1, and let

am(n) = a1(n) + a2(n) + · · ·+ am−1(n).

Is (am(n)) the fixed point of a morphism? The conjectured answer is yes! We take m = 7 to
illustrate a procedure, starting with

(a7(n)) = (1, 1, 2, 7, 1, 1, 1, 1, 1, 3, 6, 1, 1, 1, 1, 1, 4, 5, 1, 1, 1, 1, 1, 4, 5, 1, . . .). (6.3)

Partition (a7(n)) into consecutive blocks of length 7, as indicated by Table 5.

Table 5. Blocks of length 7
(1,1,2,7,1,1,1) (1,1,3,6,1,1,1)
(1,1,4,5,1,1,1) (1,1,4,5,1,1,1)
(1,1,1,6,3,1,1) (1,1,1,7,2,1,1)
(1,1,1,6,3,1,1) (1,1,1,7,2,1,1)
(1,1,1,8,1,1,1) (1,1,2,7,1,1,1)
(1,1,3,6,1,1,1) (1,1,4,5,1,1,1)
(1,1,3,6,1,1,1) (1,1,1,6,3,1,1)
(1,1,1,7,2,1,1) (1,1,1,8,1,1,1)
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Delete duplicates and sort lexicographically, getting

(1, 1, 1, 6, 3, 1, 1), (1, 1, 1, 7, 2, 1, 1), (1, 1, 1, 8, 1, 1, 1), (1, 1, 2, 7, 1, 1, 1),

(1, 1, 3, 6, 1, 1, 1), (1, 1, 4, 5, 1, 1, 1)

from what is shown in Table 5, and seeking further, find the seventh block, (1, 1, 5, 4, 1, 1, 1).
Next, number the blocks as 0, 1, 2, 3, 4, 5, 6, and substitute them into (6.3) to get

(3, 4, 5, 5, 0, 1, 2, 3, 4, 5, 4, 0, 1, 2, 3, 4, 5, 3, 0, 1, 2, 3, 4, 5, 3, 0, 1, 2, 3, 4, 5, 6, . . .), (6.4)

which is the sequence we wish to generate using a morphism. Partition (6.4) into blocks of
length 7; again, delete duplicates and sort into descending order 7 distinct blocks, obtaining

(3, 4, 5, 6, 2, 1, 2), (3, 4, 5, 6, 1, 1, 2), (3, 4, 5, 6, 0, 1, 2), (3, 4, 5, 5, 0, 1, 2),

(3, 4, 5, 4, 0, 1, 2), (3, 4, 5, 3, 0, 1, 2), (3, 4, 5, 1, 1, 4, 5).

Numbering these as 0, 1, . . . , 6, we concatenate blocks as follows:

(block 3)(block 4)(block 5)(block 5)(block 0) · · · .

This concatenation yields (6.4), showing that it is the fixed point of the morphism. Following
is a code for this morphism:

morph=Take[Nest[Flatten[#/.Thread[Range[n]-1->subs]]&,{0},9],100]

Now putting the procedure together for arbitrary n ≥ 2 :

stringPartition[s_,n_]:=StringCases[s,Repeated[_,{n}]]

Clear[f];

m=7;

f[n_]:=Block[{a={},r=Range@n,s},Do[If[Length@r>m+1,s=Total@Take[r,m];

AppendTo[a,s];r=Drop[#,m]&@DeleteCases[r,x_/;x==s],Break[]],{k,n}];a];

d[m]=f@10000;

diffs[m]=Differences[d[m]]-m^2+1;

replacements=Union[stringPartition[StringJoin[Map[ToString,diffs[m]]],m]];

str=StringReplace[StringJoin[Map[ToString,diffs[m]]],

Table[replacements[[nn]]->FromCharacterCode[47+nn],{nn,m}]];

subs=ToExpression[Characters[Reverse[Union[stringPartition[str,m]]]]]

morph=Take[Nest[Flatten[#/.Thread[Range[m]-1->subs]]&,{0},8],200]

result=Accumulate[Prepend[Flatten[morph/.Thread[Range[m]-1

->ToExpression[Characters[replacements]]]]+m^2-1,1/2 m (1+m)]]

Take[d[m],#]-Take[result,#]&[Min[Length[d[m]],Length[result]]]

(*should be a bunch of zeros*)

Explicitly, for m = 7,
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morph = Take[Nest[Flatten[#/.Thread[{0,1,2,3,4,5,6}-> {{3,4,5,6,2,1,2},

{3,4,5,6,1,1,2},{3,4,5,6,0,1,2},{3,4,5,5,0,1,2},{3,4,5,4,0,1,2},

{3,4,5,3,0,1,2},{3,4,5,1,1,4,5}}]] &,{0},8],200]

Accumulate[Prepend[Flatten[morph/.Thread[{0,1,2,3,4,5,6}->{{1,1,1,6,3,1,1},

{1,1,1,7,2,1,1},{1,1,1,8,1,1,1},{1,1,2,7,1,1,1},{1,1,3,6,1,1,1},

{1,1,4,5,1,1,1},{1,1,5,4,1,1,1}}]]+48,28]]

Example 11. A second kind of generalization of the anti-Fibonacci system is represented by
the partition of N into 3 sequences defined by an = least new k, bn = least new k ≥ an + n,
and cn = an + bn; see A298870.

Table 6. Sequences (an), (bn), (cn)
n 0 1 2 3 4 5 6 7 8
an 1 4 6 8 11 14 15 17 19
bn 2 5 7 10 12 16 20 22 25
cn 3 9 13 18 23 30 35 39 44

Let x = limn→∞ an/n. Then x = limn→∞ bn/n = x+ 1, x = limn→∞ cn/n = 2x+ 1, and

1

x
+

1

x+ 1
+

1

2x+ 1
= 1,

with positive solution

x =
1

3
+

2
√

7

3
cos

1

3
tan−1

3
√

111

67
= 2.078162587 . . .

A third kind of generalization of the anti-Fibonacci system comes from replacing an + bn;
e.g., for 2an + bn, see A304500. In the next example, we take cn = an + bn + n :

Example 12. Here, the system consists of three sequences that partition N: an = mex, bn =
mex, cn = an + bn + n.

Table 7. Sequences (an), (bn), (cn)
n 0 1 2 3 4 5 6 7 8
an 1 4 6 8 11 13 16 18 21
bn 2 5 7 9 12 14 17 19 22
cn 3 10 15 20 27 32 39 44 51

Let

x = lim
n→∞

an/n, y = lim
n→∞

bn/n, z = lim
n→∞

cn/n.

It is easy to prove that x = y = 1 +
√

2 and z = 3 + 2
√

2, and we conjecture that
√

2

2
< an − nx < 1 +

√
2

2
< bn − nx < 2 +

√
2

2

and

1 +
√

2 < cn − nz < 3 +
√

2

for all n.
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7. Examples of complementary equations and systems in OEIS

In OEIS, entries for certain sequences related to complementary equations include, in the
Comments section, a guide to related sequences. We conclude this section with a list of such
entries in Table 8 and a similar list in Table 9 for systems of complementary equations, as
introduced in Section 6:

Table 8. OEIS complementary equations with guides
A022424 an = bn−1 + bn−2
A022940 an = an−1 + bn−2
A293076 an = an−1 + an−2 + bn−2 + 2n
A293358 an = an−1 + an−2 + bn−1
A293765 an = an−1 + an−2 + bn−1 + 2
A294532 an = an−1 + an−2 + bn−2
A294414 an = an−1 + an−2 − bn−1 + bn−2
A294476 an = an−2 + bn−1 + 1
A294860 an = an−2 + bn−2
A295053 an = an−1 + an−2 + b0 + bn−1 + · · ·+ bn−1
A295357 an = an−1 + an−2 + bn−1 + bn−2 + bn−3
A295613 an = 2an−1 − an−3 + bn−1
A295862 an = an−1 + an−2 + bn
A296000 an = a0bn−2 + a1bn−2 + · · ·+ an−2b0
A296245 an = an−1 + an−2 + b2n
A297800 an = a1bn − a0bn−1 + 2n
A297830 an = a1bn−1 − a0bn−2 + 2n
A304799 an = bn + b2n

Table 9. OEIS systems with guides
entry an bn cn

A297469 mex an + cn−1 mex
A298868 mex mex ≥ an + n an + bn
A299634 mex ≥ 2bn−1 mex an + bn

8. Notes regarding Mathematica codes

This section shows Mathematica (version ≥ 7) codes used to generate complementary se-
quences discussed in this article. These may prove useful for further research.

Code for Example 1.

a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;

a[n_] := a[n] = 4 a[n - 1] - 4 a[n - 2] + b[n];

j = 1; While[j < 12, k = a[j] - j - 1;

While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];

Table[a[n], {n, 0, 30}]

Table[b[n], {n, 0, 30}]

k (* k = number of terms of a( ) and b( ) that are computed *)

Column[N[Table[a[n]/a[n - 1], {n, 1, 100}], 10 ]]
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A first code for Example 2.

a[0] = 1; a[1] = 2; b[0] = 3;

a[n_] := a[n] = 4 a[n - 1] - 4 a[n - 2] + b[n - 2];

j = 1; While[j < 12, k = a[j] - j - 1;

While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];

Table[a[n], {n, 0, 30}]

A second code for Example 2. This code uses the mex function and displays several terms of
(n), (an), and (bn).

mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);

a = {1, 2}; b = {};

Do[AppendTo[b, mex[Flatten[{a, b}], If[b == {}, 1, Last[b]]]];

AppendTo[a, 4 a[[-1]] - 4 a[[-2]] + Last[b]], {20}];

Grid[{Join[{"n"}, Range[0, Length[b] - 1]],

Join[{"a(n)"}, Take[a, Length[b]]], Join[{"b(n)"}, b]},

Alignment -> ".",

Dividers -> {{2 -> Red, -1 -> Blue}, {2 -> Red, -1 -> Blue}}]

Code for Example 12. The following code generates the first z terms of the three sequences in
Example 12. In Mathematica terminology, they are “lists” denoted by a, b, c, for which the
indexing starts at 1.

z=1000;w=100;

mex[list_,start_]:=(NestWhile[#+1&,start,MemberQ[list,#]&]);

a={};b={};c={};

Do[AppendTo[a,mex[Flatten[{a,b,c}],If[Length[a]==0,1,Last[a]]]];

AppendTo[b,mex[Flatten[{a,b,c}],Last[a]]];

AppendTo[c,Last[a]+Last[b]+Length[a]-1],{z}];

Take[a,w]

Take[b,w]

Take[c,w]

Map[N[a[[#]]-(#-1)*(1+Sqrt[2])]&,Range[w]]

Map[N[b[[#]]-(#-1)*(1+Sqrt[2])]&,Range[w]]

Map[N[c[[#]]-(#-1)*(3+2 Sqrt[2])]&,Range[w]]
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