FIBONACCI AND LUCAS NUMBERS WHICH HAVE EXACTLY THREE PRIME FACTORS AND SOME UNIQUE PROPERTIES OF F_{18} AND L_{18}

PRAPANPONG PONGSRIIAM

Abstract

Let F_{n} and L_{n} be the nth Fibonacci and Lucas numbers, respectively. Let $\omega(n)$ be the number of prime factors of $n, d(n)$ the number of positive divisors of $n, A(n)$ the least positive reduced residue system modulo n, and $\ell(n)$ the length of the longest arithmetic progressions contained in $A(n)$. On the occasion of attending the 18th Fibonacci Conference, we give some results concerning $\omega\left(F_{n}\right), \omega\left(L_{n}\right), d\left(F_{n}\right)$, and $d\left(L_{n}\right)$ which reveal a unique property of F_{18} and L_{18}. We also find the solutions to the equation $\ell(n)=18$ and show a connection between them and F_{18}. Some examples and numerical data are also given.

1. Introduction

The Fibonacci numbers are defined by the recurrence $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$ with the initial values $F_{1}=F_{2}=1$. The Lucas numbers L_{n} are defined by the same recursive pattern as the Fibonacci sequence but with the values $L_{1}=1$ and $L_{2}=3$. These numbers are famous for possessing wonderful properties, see for example in [12] and [34] for additional references and history. The Fibonacci Association was formed in order to provide enthusiasts an opportunity to exchange ideas about Fibonacci numbers and other integer sequences. On the occasion of attending the 18th Fibonacci Conference, the author would like to share an idea on some unique properties of F_{18} and L_{18}. We remark that F_{n} and L_{n} are also defined for $n \leq 0$, but we will focus our attention only on the case $n>0$.

For each $n \in \mathbb{N}$, let $\omega(n)$ be the number of distinct prime factors of n and $d(n)$ the number of positive divisors of n. Bugeaud, Luca, Mignotte, and Siksek [4] give a description of F_{n} for which $\omega\left(F_{n}\right) \leq 2$. In this article, we extend the investigation on $\omega\left(F_{n}\right), \omega\left(L_{n}\right), d\left(F_{n}\right)$, and $d\left(L_{n}\right)$, which leads us to see some unique properties of F_{18} and L_{18} (with some restrictions).

In addition, let $A(n)=\{a \in \mathbb{N} \mid 1 \leq a \leq n$ and $(a, n)=1\}$ be the least positive reduced residue system modulo n and let $\ell(n)$ be the length of longest arithmetic progressions contained in $A(n)$. Recamán (see Guy's book [7, Chapter B40]) asks if $\ell(n) \rightarrow \infty$ as $n \rightarrow \infty$. Stumpf [32] gives an affirmative answer to this question. Pongsriiam [19] completely solves this problem by giving exact formulas for $\ell(n)$ for all $n \in \mathbb{N}$. In this article, we find all positive integers n satisfying $\ell(n)=18$ and show a connection between them and F_{18}.

We organize this article as follows. In Section 2, we give some preliminaries and lemmas. In Section 3, we present the results on $\omega\left(F_{n}\right), d\left(F_{n}\right), \omega\left(L_{n}\right)$, and $d\left(L_{n}\right)$. Finally, we find the solutions to the equation $\ell(n)=18$ in Section 4. For some recent results concerning the divisibility properties or Diophantine equations involving F_{n} and L_{n}, we refer the reader to $[17,18,20,21,22,23,24,25]$ and references therein. Throughout this article, the letters p and q with or without subscript denote a prime.

$$
\text { ON } \omega\left(F_{N}\right), \omega\left(L_{N}\right), d\left(F_{N}\right), d\left(L_{N}\right), F_{18}, \text { AND } L_{18}
$$

2. Preliminaries and Lemmas

In this section, we recall some useful lemmas for the reader's convenience. In particular, Lemmas 2.1, 2.2, 2.3, and Theorem 2.4 will be used throughout this article, sometimes without reference.

Lemma 2.1. Let m and n be positive integers and $d=(m, n)$. Then
(i) $\left(F_{m}, F_{n}\right)=F_{d}$.
(ii) $\left(L_{m}, L_{n}\right)= \begin{cases}L_{d}, & \text { if } \frac{m}{d} \text { and } \frac{n}{d} \text { are odd, } \\ 2, & \text { if } \frac{m}{d} \text { or } \frac{n}{d} \text { is even and } 3 \mid d, \\ 1, & \text { otherwise. }\end{cases}$
(iii) $\left(F_{m}, L_{m}\right)= \begin{cases}2, & \text { if } 3 \mid m, \\ 1, & \text { otherwise } .\end{cases}$
(iv) $F_{2 m}=F_{m} L_{m}$.
(v) For $m \neq 2, F_{m} \mid F_{n}$ if and only if $m \mid n$.
(vi) For $m \neq 1, L_{m} \mid L_{n}$ if and only if $m \mid n$ and $\frac{n}{m}$ is odd.
(vii) (Binet's formula) For every $n \geq 1$, we have $F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$ and $L_{n}=\alpha^{n}+\beta^{n}$ where $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$.
(viii) For every $n \geq 2, L_{n}=F_{n+1}+F_{n-1}=F_{n}+2 F_{n-1}=2 F_{n}+F_{n-3}$.

Proof. These are well-known results. For proofs see, for example, [12, 34].

We write $z(n)$ to denote the order (or the rank) of appearance of n in the Fibonacci sequence which is defined as the smallest positive k such that $n \mid F_{k}$. For some recent results on $z(n)$, see $[8,9,10,26,29]$ and references therein. Basic properties of $z(n)$ are the following.

Lemma 2.2. Let $p \neq 5$ be a prime and let m and n be positive integers. Then the following statements hold.
(i) $n \mid F_{m}$ if and only if $z(n) \mid m$.
(ii) $z(p) \mid p+1$ if and only if $p \equiv 2$ or $-2(\bmod 5)$ and $z(p) \mid p-1$, otherwise.
(iii) $\operatorname{gcd}(z(p), p)=1$.

Proof. These are also well known. See [18, Lemma 1] for more details.
Recall that the p-adic valuation (or p-adic order) of n, denoted by $v_{p}(n)$, is the exponent of p in the prime factorization of n. The formulas for $v_{p}\left(F_{n}\right)$ and $v_{p}\left(L_{n}\right)$ are as follows.

Lemma 2.3. (Lengyel [14]) Let n be a positive integer. Then

$$
\begin{aligned}
& v_{2}\left(F_{n}\right)= \begin{cases}0, & \text { if } n \equiv 1,2 \quad(\bmod 3), \\
1, & \text { if } n \equiv 3 \quad(\bmod 6), \\
v_{2}(n)+2, & \text { if } n \equiv 0 \quad(\bmod 6) ;\end{cases} \\
& v_{2}\left(L_{n}\right)= \begin{cases}0, & \text { if } n \equiv 1,2 \quad(\bmod 3), \\
2, & \text { if } n \equiv 3 \quad(\bmod 6), \\
1, & \text { if } n \equiv 0 \quad(\bmod 6) ;\end{cases}
\end{aligned}
$$

THE FIBONACCI QUARTERLY

$$
\begin{aligned}
& v_{5}\left(F_{n}\right)=v_{5}(n), v_{5}\left(L_{n}\right)=0, \text { and if } p \text { is a prime, } p \neq 2, \text { and } p \neq 5, \text { then } \\
& v_{p}\left(F_{n}\right)= \begin{cases}v_{p}(n)+v_{p}\left(F_{z(p)}\right), & \text { if } n \equiv 0(\bmod z(p)), \\
0, & \text { if } n \neq 0(\bmod z(p)) ;\end{cases} \\
& v_{p}\left(L_{n}\right)= \begin{cases}v_{p}(n)+v_{p}\left(F_{z(p)}\right), & \text { if } z(p) \text { is even and } n \equiv \frac{z(p)}{2}(\bmod z(p)), \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Suppose that $\left(u_{n}\right)$ is the Fibonacci or Lucas sequence. A prime p is said to be a primitive divisor of u_{n} if $p \mid u_{n}$ but p does not divide u_{m} for any $m<n$. Then a special case of the primitive divisor theorem of Carmichael can be stated as follows.
Theorem 2.4. (Carmichael [5]) The Fibonacci number F_{n} has a primitive divisor for every $n \neq 1,2,6,12$, and the Lucas number L_{n} has a primitive divisor for every $n \neq 1,6$.

There is a long history about primitive divisors and the most remarkable results in this topic are given by Bilu, Hanrot, and Voutier [1], by Stewart [31], and by Kunrui [13]. Nevertheless, Theorem 2.4 is good enough in our situation.

Bugeaud, Luca, Mignotte, and Siksek [4, proof of Theorem 5] show that $\omega\left(F_{n}\right) \geq d(n)-4$ for all $n \in \mathbb{N}$. We extend this to the following lemma.
Lemma 2.5. Let m be a positive integer and let $x(m)$ be the number of elements in the set $\{1,2,6,12\} \cap\{d: d \mid m\}$. Then the following statements hold:
(i) $\omega\left(F_{m}\right) \geq d(m)-x(m)$.
(ii) If $\omega(m) \geq 3$, then $\omega\left(F_{m}\right) \geq 5$.
(iii) $\omega\left(F_{2^{m}}\right)=m-1$ for $m<6$ and $\omega\left(F_{2^{m}}\right) \geq m$ for $m \geq 6$.

Proof. We use Lemma 2.1(v) and Theorem 2.4 throughout the proof without further reference. If $k \mid m$ and $k \notin\{1,2,6,12\}$, then $F_{k} \mid F_{m}$ and F_{k} has a primitive divisor. By writing all such k in an increasing order as $k_{1}<k_{2}<\cdots<k_{\ell}$, we see that $\omega\left(F_{m}\right) \geq \ell=d(m)-x(m)$. This proves (i). Next assume that $\omega(m) \geq 3$. If $2 \nmid m$ or $3 \nmid m$, then at least one of 2 or 6 is not a divisor of m, so $x(m) \leq 3$ and $\omega\left(F_{m}\right) \geq d(m)-x(m) \geq 2^{\omega(m)}-3 \geq 5$. Suppose that $2 \mid m$ and $3 \mid m$. Since $\omega(m) \geq 3$, there exists a prime $p \neq 2,3$ such that $p \mid m$. Then $6 p \mid m$, so $F_{6 p} \mid F_{m}$ and

$$
\omega\left(F_{m}\right) \geq \omega\left(F_{6 p}\right) \geq d(6 p)-3=5 .
$$

Next we prove (iii). If $m<6$, then $\omega\left(F_{2^{m}}\right)$ can be obtained by using the table distributed by the Fibonacci Association [2]. In addition, $\omega\left(F_{2^{6}}\right)=6$ and for $m>6$, we have the chain of divisibility $F_{2^{6}}\left|F_{2^{7}}\right| \cdots\left|F_{2^{m-1}}\right| F_{2^{m}}$ and each of them has a primitive prime divisor. Therefore if $m>6$, then

$$
\omega\left(F_{2^{m}}\right) \geq \omega\left(F_{2^{m-1}}\right)+1 \geq \omega\left(F_{2^{m-2}}\right)+2 \geq \cdots \geq \omega\left(F_{2^{6}}\right)+m-6=m .
$$

Using an intricate combination of Baker's method, modular method, and computer verification, Bugeaud, Mignotte, and Siksek [3] were able to determine all perfect powers in the Fibonacci and Lucas sequences. We state their result in the following theorem.
Theorem 2.6. (Bugeaud, Mignotte, and Siksek [3]) The only solutions to the equation

$$
F_{n}=y^{m} \quad \text { in integers } m \geq 2, n \geq 0, y \geq 0
$$

are given by $n=0,1,2,6$, and 12 which correspond respectively to $F_{n}=0,1,1,8$, and 144 . Moreover, the only solutions to the equation $L_{n}=y^{m}$ with $m \geq 2, n \geq 0, y \geq 0$ are given by $n=1$ and 3 which correspond respectively to $L_{n}=1$ and 4 .

$$
\text { ON } \omega\left(F_{N}\right), \omega\left(L_{N}\right), d\left(F_{N}\right), d\left(L_{N}\right), F_{18}, \text { AND } L_{18}
$$

Next we recall exact formulas for the length of longest arithmetic progressions contained in the least positive reduced residue systems.

Lemma 2.7. (Pongsriiam [19, Theorem 3.1]) Suppose that $n>1$ is squarefree and p is the largest prime factor of n. Then

$$
\ell(n)= \begin{cases}p-1, & \text { if } n \text { is a prime } ; \\ \frac{p+1}{2}, & \text { if } n=2 p, p \geq 3, \text { and } p \equiv 3 \quad(\bmod 4) ; \\ p-\left\lfloor\frac{p^{2}}{n}\right\rfloor-1, & \text { otherwise. }\end{cases}
$$

Lemma 2.8. (Pongsriiam [19, Theorem 3.2 and Theorem 3.3]) Suppose that $n>1$ is not squarefree, p is the largest prime factor of n, and $\gamma(n)=\prod_{p \mid n} p$. Then

$$
\ell(n)=\max \left\{\frac{n}{\gamma(n)}, p-1\right\} .
$$

3. Main Results I: On $\omega\left(F_{n}\right), d\left(F_{n}\right), \omega\left(L_{n}\right)$, And $d\left(L_{n}\right)$

Bugeaud, Luca, Mignotte, and Siksek [4, Lemma 3.1 and Theorem 4] give a description of the integers n satisfying $\omega\left(F_{n}\right) \leq 2$. We extend it to the case $\omega\left(F_{n}\right)=3$ in the next theorem.

Theorem 3.1. The only solutions to the equation $\omega\left(F_{n}\right)=3$ are given by

$$
\begin{align*}
& n=16,18, \text { or } 2 p \text { for some prime } p \geq 19, \tag{3.1}\\
& n=p, p^{2}, p^{3} \text { for some prime } p \geq 5 \tag{3.2}\\
& n=p q \text { for some distinct primes } p, q \geq 3 \tag{3.3}
\end{align*}
$$

Proof. Assume that $\omega\left(F_{n}\right)=3$. By Lemma 2.5(ii), we obtain $\omega(n) \leq 2$. Therefore $n=2^{a}, p^{a}$, $2^{a} p^{b}$, or $p^{a} q^{b}$ for some distinct odd primes p, q and positive integers a, b.

Case 1. $n=2^{a}$. By Lemma 2.5(iii), we obtain $3=\omega\left(F_{n}\right) \geq a-1$, so $a \leq 4$. By Lemma 2.5(iii) again, $a-1=\omega\left(F_{n}\right)=3$. So $a=4$ and we obtain $n=2^{4}$ as a solution to $\omega\left(F_{n}\right)=3$.

Case 2. $n=p^{a}$. By Lemma 2.5(i), we have $3=\omega\left(F_{n}\right) \geq d\left(p^{a}\right)-x\left(p^{a}\right)=a+1-1=a$. So $a \leq 3$ and thus $n=p, p^{2}$, or p^{3}. We also check that $\omega\left(F_{3}\right), \omega\left(F_{9}\right), \omega\left(F_{27}\right) \neq 3$. So $p \geq 5$. This case corresponds to (3.2).

Case 3. $n=2^{a} p^{b}$. If $a \geq 2$ and $p \geq 5$, then $4 p \mid n$, so $F_{4 p} \mid F_{n}$ and we obtain by Lemma 2.5(i) that $\omega\left(F_{n}\right) \geq \omega\left(F_{4 p}\right) \geq d(4 p)-2=4$, which is not the case. So $a=1$ or $p=3$. From this point on, we apply Lemma 2.5 without further reference.

Case 3.1. $a=1$. If $p \geq 5$, then $3=\omega\left(F_{n}\right)=\omega\left(F_{2 p^{b}}\right) \geq d\left(2 p^{b}\right)-2=2 b$, which implies $b=1$ and so $n=2 p$. Suppose $p=3$. If $b=1$, then $n=6$ and $\omega\left(F_{n}\right)=1 \neq 3$. If $b \geq 3$, then $54 \mid n$ and $\omega\left(F_{n}\right) \geq \omega\left(F_{54}\right)=6$, which is not the case. So $b=2$ and we see that $\omega\left(F_{n}\right)=\omega\left(F_{18}\right)=3$. We also check that $\omega\left(F_{2 p}\right) \neq 3$ if $p<19$. Therefore this case leads to the solutions $n=2 p$ with $p \geq 19$ or $n=18$, which correspond to (3.1).

Case 3.2. $a>1$ and $p=3$. If $a \geq 3$, then $24 \mid n$ and $\omega\left(F_{n}\right) \geq \omega\left(F_{24}\right)=4$, which is not the case. So $a=2$. Then if $b \geq 2$, then $36 \mid n$ and $\omega\left(F_{n}\right) \geq \omega\left(F_{36}\right)=5$, a contradiction. If $b=1$, then $n=12$ and $\omega\left(F_{n}\right)=\omega\left(F_{12}\right)=2 \neq 3$. So there is no solution in this case.

Case 4. $n=p^{a} q^{b}$. Then $3=\omega\left(F_{n}\right) \geq d\left(p^{a} q^{b}\right)-1 \geq a+b+1 \geq 3$. So $a+b=2$, which implies $a=b=1$ and $n=p q$. This corresponds to (3.3) and the proof is complete.

Example 3.2. By considering the table distributed by the Fibonacci Association [2], we obtain some examples of all the possibilities given in Theorem 3.1 as follows.

THE FIBONACCI QUARTERLY

(i) $\omega\left(F_{n}\right)=3$ and $n=2 p: n=2 \times 19, F_{n}=37 \times 113 \times 9349 ; n=2 \times 23, F_{n}=$ $139 \times 461 \times 28657 ; n=2 \times 29, F_{n}=59 \times 19489 \times 514229$.
(ii) $\omega\left(F_{n}\right)=3$ and $n=p, p^{2}, p^{3}: n=37, F_{n}=73 \times 149 \times 2221$; $n=7^{2}, F_{n}=13 \times 97 \times$ 6168709; $n=5^{3}, F_{n}=5^{3} \times 3001 \times 158414167964045700001$.
(iii) $\omega\left(F_{n}\right)=3$ and $n=p q: n=3 \times 5,3 \times 7,3 \times 11,5 \times 7$ and $F_{n}=2 \times 5 \times 61,2 \times 13 \times 421$, $2 \times 89 \times 19801,5 \times 13 \times 141961$, respectively.
We also remark that not all the integers in (3.1), (3.2), (3.3) give a solution to $\omega\left(F_{n}\right)=3$. For instance, from the table [2] and computer verification, we obtain the following.
(iv) $n=2 p$ and $\omega\left(F_{n}\right) \neq 3: n=2 \times 37, F_{n}=73 \times 149 \times 2221 \times 54018521$.
(v) $n=p, p^{2}, p^{3}$ and $\omega\left(F_{n}\right) \neq 3: n=7, F_{n}=13 ; n=5^{2}, F_{n}=5^{2} \times 3001 ; n=7^{3}$, $F_{n}=13 \times 97 \times 5449038756620509 \times 6168709 \times 46649 \times m$ where m is a positive integer with 42 digits.
(vi) $n=p q$ and $\omega\left(F_{n}\right) \neq 3: n=3 \times 19, F_{n}=2 \times 37 \times 113 \times 797 \times 54833$.

A more precise description of the Fibonacci numbers satisfying $\omega\left(F_{n}\right)=3$ is given in the next theorem.

Theorem 3.3. Assume that $\omega\left(F_{n}\right)=3$ and $n=p_{1} p_{2}$ where $p_{1}<p_{2}$ are odd primes. Then $F_{p_{1}}=q_{1}, F_{p_{2}}=q_{2}$, and $F_{n}=q_{1}^{a_{1}} q_{2} q_{3}^{a_{3}}$ where q_{1}, q_{2}, q_{3} are distinct primes, q_{3} is a primitive divisor of $F_{n}, a_{3} \geq 1$ and $a_{1} \in\{1,2\}$. Furthermore $a_{1}=2$ if and only if $q_{1}=p_{2}$.

Proof. Since $F_{p_{1}}$ and $F_{p_{2}}$ divide F_{n} and each of them has a primitive divisor, we obtain $3=\omega\left(F_{n}\right) \geq \omega\left(F_{p_{1}}\right)+\omega\left(F_{p_{2}}\right)+1 \geq 3$, which implies $\omega\left(F_{p_{1}}\right)=1=\omega\left(F_{p_{2}}\right)$. By Theorem 2.6, $F_{p_{1}}=q_{1}$ and $F_{p_{2}}=q_{2}$ where q_{1}, q_{2} are primes. Since $p_{1}<p_{2}$, we obtain $q_{1}<q_{2}$. In addition, since $q_{1}, q_{2} \mid F_{n}$ and $\omega\left(F_{n}\right)=3$, we see that $F_{n}=q_{1}^{a_{1}} q_{2}^{a_{2}} q_{3}^{a_{3}}$ where q_{3} is a primitive divisor of F_{n}, and a_{1}, a_{2}, a_{3} are positive integers. It remains to show that $a_{2}=1$ and $a_{1} \in\{1,2\}$.

Case 1. $p_{1} \geq 7$. So $q_{1}, q_{2}>5$. By Lemma 2.2 , we know that $z\left(q_{1}\right)=p_{1}, z\left(q_{2}\right)=p_{2}$, and $\left(q_{1}, p_{1}\right)=1=\left(q_{2}, p_{2}\right)$. In addition, $q_{2}=F_{p_{2}}>p_{2}>p_{1}$. Therefore we obtain by Lemma 2.3 that $a_{2}=v_{q_{2}}\left(F_{n}\right)=v_{q_{2}}\left(p_{1} p_{2}\right)+v_{q_{2}}\left(F_{z\left(q_{2}\right)}\right)=1$ and $a_{1}=v_{q_{1}}\left(F_{n}\right)=v_{q_{1}}\left(p_{1} p_{2}\right)+v_{q_{1}}\left(F_{z\left(q_{1}\right)}\right)=$ $v_{q_{1}}\left(p_{2}\right)+1=1$ or 2 , and $a_{1}=2$ if and only if $q_{1}=p_{2}$.

Case 2. $p_{1}=5$. Then $q_{1}=5$ and similar to Case 1, we obtain $q_{2}>p_{2}>p_{1}$ and $F_{n}=5^{a_{1}} q_{2}^{a_{2}} q_{3}^{a_{3}}$. Then $a_{1}=v_{5}\left(F_{n}\right)=v_{5}(n)=1$ and $a_{2}=v_{q_{2}}\left(F_{n}\right)=v_{q_{2}}\left(p_{1} p_{2}\right)+1=1$.

Case 3. $p_{1}=3$. Then $q_{1}=2$. If $p_{2}=5$, then $F_{n}=F_{15}=2 \times 5 \times 61, q_{2}=5, q_{3}=61$, and $a_{1}=a_{2}=a_{3}=1$. If $p_{2} \geq 7$, then $q_{2}>p_{2}>p_{1}, a_{2}=v_{q_{2}}\left(F_{n}\right)=v_{q_{2}}\left(p_{1} p_{2}\right)+1=1$, $a_{1}=v_{q_{1}}\left(F_{n}\right)=v_{2}\left(F_{n}\right)=1$. This completes the proof.

Suppose $\omega\left(F_{n}\right)=3$ and $n=2 p$ where $p \geq 19$. Then by the method similar to the proof of Theorem 3.3, we obtain that F_{p} or L_{p} is a prime and $F_{n}=p_{1} p_{2}^{a_{2}} p_{3}^{a_{3}}$, where p_{1}, p_{2}, p_{3} are distinct primes and $\left(a_{2}, a_{3}\right)=1$. The other cases of Theorem 3.1 can also be further analyzed in a similar way. To give results analogous to Theorem 3.1 for the Lucas numbers, we first prove the following lemma.

Lemma 3.4. Let $m \in \mathbb{N}$ and $y(m)$ the number of elements in the set $\{1,6\} \cap\{d: d \mid m\}$. Then the following statements hold.
(i) $\omega\left(L_{m}\right) \geq d\left(m / 2^{v_{2}(m)}\right)-y(m)$.
(ii) If $\omega(m) \geq 3$, then $\omega\left(L_{m}\right) \geq 4$.

Proof. If $k \mid m, m / k$ is odd, and $k \neq 1,6$, then $L_{k} \mid L_{m}$ and L_{k} has a primitive divisor. The conditions $k \mid m$ and m / k is odd means that $k=2^{v_{2}(m)} k_{1}$ where k_{1} is odd and k_{1} divides $m / 2^{v_{2}(m)}$. This implies (i). Next assume that $\omega(m) \geq 3$. If m is odd, then we obtain by (i)

$$
\text { ON } \omega\left(F_{N}\right), \omega\left(L_{N}\right), d\left(F_{N}\right), d\left(L_{N}\right), F_{18}, \text { AND } L_{18}
$$

that

$$
\omega\left(L_{m}\right) \geq d(m)-1 \geq 2^{\omega(m)}-1 \geq 7
$$

So we suppose $m=2^{a} p_{2}^{b} p_{3}^{c} k$ where $p_{2}<p_{3}$ are odd primes, a, b, c are positive integers, and k is odd. If $p_{2}>3$ or $a>1$ or $b>1$, then $L_{2^{a}}, L_{2^{a} p_{2}^{b}}, L_{2^{a} p_{3}^{c}}$, and L_{m} are distinct divisors of L_{m}, each of which has a primitive divisor, and thus $\omega\left(L_{m}\right) \geq 4$. Therefore it remains to consider the case $p_{2}=3$ and $a=b=1$. Then $m=6 p_{3}^{c} k$, and $L_{6}, L_{2 p_{3}^{c}}$, and L_{m} are divisors of L_{m}. In addition, $L_{2 p_{3}^{c}}$ and L_{m} have a primitive divisor. Therefore $\omega\left(L_{m}\right) \geq \omega\left(L_{6}\right)+2=4$. This completes the proof.
Theorem 3.5. If $\omega\left(L_{n}\right)=3$, then n satisfies one of the following conditions: $n=2^{a}$ for some $a>7, n=p, p^{2}, p^{3}$ for some odd prime $p, n=2^{a} p, 2^{a} p^{2}$ for some odd prime p and positive integer a, $n=p q$ for some distinct odd primes p, q. In addition, if $\omega\left(L_{n}\right)=3$ and $n=9 \cdot 2^{a}$ for some $a \geq 1$, then $n=18$.
Proof. Since $\omega\left(L_{n}\right)=3$, we obtain by Lemma 3.4 that $\omega(n) \leq 2$. Therefore $n=2^{a}, p^{a}, 2^{a} p^{b}$, or $p^{a} q^{b}$ for some distinct odd primes p, q and positive integers a, b. Since the proof is similar to that of Theorem 3.1, we give fewer details. Since $\omega\left(L_{2^{a}}\right)<3$ for $a \leq 7$, we see that if $n=2^{a}$, then $a>7$. If $n=p^{a}$, then $\omega\left(L_{n}\right)=\omega\left(L_{p^{a}}\right) \geq d\left(p^{a}\right)-1=a$, so $n=p, p^{2}, p^{3}$. Next assume that $n=2^{a} p^{b}$. Since $L_{2^{a} p^{k}} \mid L_{2^{a} p^{b}}$ for all $k=0,1, \ldots, b$, we see that $\omega\left(L_{n}\right) \geq b+1$, so $b \leq 2$ and $n=2^{a} p$ or $2^{a} p^{2}$. If $n=p^{a} q^{b}$, then $\omega\left(L_{n}\right) \geq d\left(p^{a} q^{b}\right)-1 \geq a+b+1$, and thus $a=b=1$ and $n=p q$. This proves the first part. For the second part, suppose for a contradiction that $\omega\left(L_{n}\right)=3, n=9 \cdot 2^{a}$, but $a \geq 2$. Then $2, L_{2^{a}}, L_{2^{a} \cdot 3}, L_{n}$ divide L_{n} and each of them has a primitive divisor. Therefore $\omega\left(L_{n}\right) \geq 4$, a contradiction. So $a=1$ and thus $n=18$.

Example 3.6. By using the table [2] and computer verification, we obtain some examples of all the possibilities given in Theorem 3.5 as follows.
(i) $\omega\left(L_{n}\right)=3$ and $n=2^{a}: n=2^{8}$ and $L_{n}=34303 \times 73327699969 \times p$ where p is a prime with 39 digits.
(ii) $\omega\left(L_{n}\right)=3$ and $n=p, p^{2}, p^{3}: n=59, L_{n}=709 \times 8969 \times 336419 ; n=5^{2}, L_{n}=$ $11 \times 101 \times 151 ; n=3^{3}, L_{n}=2^{2} \times 19 \times 5779$.
(iii) $\omega\left(L_{n}\right)=3$ and $n=2^{a} p, 2^{a} p^{2}: n=2 \times 11,2^{2} \times 3,2^{3} \times 5,2 \times 3^{2}$ and $L_{n}=3 \times 43 \times 307$, $2 \times 7 \times 23,47 \times 1601 \times 3041,2 \times 3^{3} \times 107$, respectively.
(iv) $\omega\left(L_{n}\right)=3$ and $n=p q: n=3 \times 5, L_{n}=2^{2} \times 11 \times 31$.

As in Theorem 3.1 and Example 3.2, not all integers of the form given in Theorem 3.5 give a solution to $\omega\left(L_{n}\right)=3$; such the integers can be obtained from the table [2].

Next we present a unique property of F_{18}. If p and $p+2$ are primes, then we call p and $p+2$ twin primes. Since 17 and 19 divide F_{18}, we say that F_{18} has twin prime factors. In addition, F_{n} has no twin prime factors for $n<18$. So F_{18} is the smallest Fibonacci number which has twin prime factors. In fact, F_{18} is the only even Fibonacci number which has exactly three prime factors, two of which are twin primes. To show this, we first prove the following lemma.
Lemma 3.7. The following statements hold.
(i) For every $n \geq 5,2 F_{n}\left(F_{n}+2\right)^{2}<F_{3 n}$.
(ii) For every $n \geq 7, F_{3 n}<2 F_{n}\left(F_{n}-2\right)^{3}$.

Proof. We let $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$, and we apply Lemma 2.1 throughout the proof. We first observe that

$$
F_{3 n}=\frac{\alpha^{3 n}-\beta^{3 n}}{\alpha-\beta}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\left(\alpha^{2 n}+(\alpha \beta)^{n}+\beta^{2 n}\right)=F_{n}\left(L_{2 n}+(-1)^{n}\right) .
$$

THE FIBONACCI QUARTERLY

So (i) and (ii) are, respectively, equivalent to

$$
2\left(F_{n}+2\right)^{2}<L_{2 n}+(-1)^{n} \quad \text { and } \quad L_{2 n}+(-1)^{n}<2\left(F_{n}-2\right)^{3} .
$$

For $n \geq 5$, we have

$$
\begin{aligned}
L_{2 n}+(-1)^{n} & \geq L_{2 n}-1=2 F_{2 n}+F_{2 n-3}-1>2 F_{2 n} \\
& =2 F_{n} L_{n}=2 F_{n}\left(F_{n}+2 F_{n-1}\right)=2 F_{n}^{2}+F_{n}\left(4 F_{n-1}\right) \\
& \geq 2 F_{n}^{2}+12 F_{n}>2 F_{n}^{2}+8 F_{n}+8=2\left(F_{n}+2\right)^{2} .
\end{aligned}
$$

For $n \geq 7$, we have

$$
\begin{aligned}
L_{2 n}+(-1)^{n} & \leq L_{2 n}+1 \leq\left(\alpha^{n}-\beta^{n}\right)^{2}+3=5 F_{n}^{2}+3<6 F_{n}^{2}, \\
2\left(F_{n}-2\right)^{3} & =2 F_{n}^{2}\left(F_{n}-6+\frac{12}{F_{n}}-\frac{8}{F_{n}^{2}}\right)>2 F_{n}^{2}\left(F_{7}-6\right)>6 F_{n}^{2},
\end{aligned}
$$

and so $L_{2 n}+(-1)^{n}<2\left(F_{n}-2\right)^{3}$, as required.
Theorem 3.8. F_{18} is the only even Fibonacci number which has exactly three prime factors where two of the prime factors are twins.

Proof. Since $F_{18}=2^{3} \times 17 \times 19$, we see that F_{18} is even, $\omega\left(F_{18}\right)=3$, and 17 and 19 are twin prime factors of F_{18}. Suppose that F_{n} is even, $\omega\left(F_{n}\right)=3$, and there are twin primes $p, p+2$ dividing F_{n}. Since F_{n} is even, $3 \mid n$. Then by Theorem $3.1, n=18$ or $n=3 q$ for some prime $q \geq 5$. Consider the case $n=3 q$. If $q=5$, then $F_{n}=F_{15}$ which does not have twin prime factors. So $q \geq 7$. By Theorem 3.3 and the assumption $p(p+2) \mid F_{3 q}$, we see that
(i) $F_{q}=p$ and $F_{3 q}=2 p(p+2)^{a}$ for some $a \geq 1$,
or (ii) $F_{q}=p+2$ and $F_{3 q}=2(p+2) p^{b}$ for some $b \geq 1$.
If $a \leq 2$ or $b \leq 2$, then $F_{3 q} \leq 2 F_{q}\left(F_{q}+2\right)^{2}$, which contradicts Lemma 3.7(i). If $a>2$ and $b>2$, then $F_{3 q} \geq 2 F_{q}\left(F_{q}-2\right)^{3}$, which contradicts Lemma 3.7(ii). So $n=3 q$ is not possible. Hence $n=18$ and the proof is complete.

Next we show a joint unique property of F_{18} and L_{18}. From the table [2], we see that $n=18$ is the only positive integer $n \leq 150$ satisfying $\omega\left(F_{n}\right)=\omega\left(L_{n}\right)=3$ and $d\left(F_{n}\right)=d\left(L_{n}\right)=16$. The range $n \leq 150$ can be extended further by using a computer. In fact, this problem is connected to the existence or nonexistence of the prime p such that $v_{p}\left(F_{z(p)}\right)>1$. Wall [35] observed that $v_{p}\left(F_{z(p)}\right)=1$ for all $p<10^{4}$. Mcintosh and Roettger [16], and Dorais and Klyve [6] extended the range $p<10^{4}$ to $p<2 \times 10^{14}$ and to $p<9.7 \times 10^{14}$, respectively. For the most update information on the range of such primes p, see the PrimeGrid Project [30]. Z. H. Sun and Z. W. Sun [33] also showed that if p is odd and $v_{p}\left(F_{z(p)}\right)=1$, then the first case of Fermat's last theorem holds for the exponent p. For a survey on the conjecture that $v_{p}\left(F_{z(p)}\right)=1$ for all p and other related problems, we refer the reader to Klaška [11].

If the above conjecture is true, then F_{18} and L_{18} are the only Fibonacci and Lucas numbers which satisfy $\omega\left(F_{n}\right)=\omega\left(L_{n}\right)=3$ and $d\left(F_{n}\right)=d\left(L_{n}\right)=16$. To show this, we need the following lemma.

Lemma 3.9. Let b be a positive integer. Assume that $v_{p}\left(F_{z(p)}\right)=1$ for all primes p. Then the following statements hold.
(i) If $p \neq 5$, then $F_{p^{b}}$ is squarefree.
(ii) If $p=5$, then $F_{p^{b}}=5^{b} m$ where m is squarefree and $5 \nmid m$.
(iii) If $p \neq 3$, then $L_{p^{b}}$ is squarefree.

$$
\text { ON } \omega\left(F_{N}\right), \omega\left(L_{N}\right), d\left(F_{N}\right), d\left(L_{N}\right), F_{18}, \text { AND } L_{18}
$$

(iv) If $p=3$, then $L_{p^{b}}=4 m$ where m is odd and squarefree.
(v) If $p \neq 3$, then $F_{2 p}$ is squarefree. If $p \neq 3,5$, then $F_{2 p^{b}}$ is squarefree.

Proof. For (i), let $p \neq 5$ and let q be a prime, $a \geq 1$, and $q^{a} \mid F_{p^{b}}$. We know that $2 \mid F_{n}$ if and only if $3 \mid n$. So if $q=2$, then $p=3$ and $a \leq v_{q}\left(F_{p^{b}}\right)=v_{2}\left(F_{3^{b}}\right)=1$. Similarly, if $q=5$, then $p=5$, which is not the case we are considering. So assume that $q \neq 2,5$. Then by Lemmas 2.2 and 2.3 , we have $(q, z(q))=1, p^{b} \equiv 0(\bmod z(q))$, and $a \leq v_{q}\left(F_{p^{b}}\right)=v_{q}\left(p^{b}\right)+v_{q}\left(F_{z(q)}\right)$. Since $1<z(q) \mid p^{b}$ and $(q, z(q))=1$, we see that $(q, p)=1$. Hence $v_{q}\left(p^{b}\right)=0$ and $a=1$. In any case, we have $a=1$. This shows that $F_{p^{b}}$ is squarefree.

For (ii), let $p=5$. Then by Lemma 2.3, we have $v_{5}\left(F_{p^{b}}\right)=v_{5}\left(p^{b}\right)=b$. So it remains to show that $F_{p^{b}} / 5^{b}$ is squarefree. Let q be a prime, $a \geq 1$, and $q^{a} \mid\left(F_{p^{b}} / 5^{b}\right)$. Then $q \neq 2,5, q^{a} \mid F_{p^{b}}$, and we can use the same argument as in Case 1 to obtain $a \leq v_{q}\left(F_{p^{b}}\right)=v_{q}\left(p^{b}\right)+v_{q}\left(F_{z(q)}\right)=1$. So $a=1$. This proves (ii). For (iii), let $p \neq 3$ and let q be a prime, $a \geq 1$, and $q^{a} \mid L_{p^{b}}$. Then by Lemma 2.3, we obtain $q \neq 2,5, z(q)$ is even, $p^{b} \equiv \frac{z(q)}{2}(\bmod z(q))$ and

$$
a \leq v_{q}\left(L_{p^{b}}\right)=v_{q}\left(p^{b}\right)+v_{q}\left(F_{z(q)}\right) .
$$

By an argument similar to that in Case 1, we obtain $1=(q, z(q))$ and $\left.1<\frac{z(q)}{2} \right\rvert\, p^{b}$ and thus $(q, p)=1$. Therefore $v_{q}\left(p^{b}\right)=0$ and $a=1$, as required. The proof of (iv) is similar to those of (ii) and (iii), so we leave the details to the reader. For (v), if $p \neq 3$, then we have $F_{2 p}=F_{p} L_{p}$ where F_{p} and L_{p} are squarefree by (i) and (iii) and are coprime by Lemma 2.1. Similarly, if $p \neq 3,5$, then $F_{2 p^{b}}=F_{p^{b}} L_{p^{b}}$ where $F_{p^{b}}$ and $L_{p^{b}}$ are squarefree and coprime. This proves (v).

Theorem 3.10. Suppose $v_{p}\left(F_{z(p)}\right)=1$ for all p. Then $\omega\left(F_{n}\right)=3$ implies $d\left(F_{n}\right)=8,12,16$. Moreover,

$$
\omega\left(F_{n}\right)=3 \text { and } d\left(F_{n}\right)=16 \text { if and only if } n=18 \text { or } 125 .
$$

Proof. Suppose $\omega\left(F_{n}\right)=3$. Then by Theorem 3.1, n satisfies (3.1), (3.2), or (3.3). We first consider the case when n satisfies (3.3). By Theorem 3.3, we obtain that $F_{n}=q_{1}^{a_{1}} q_{2} q_{3}^{a_{3}}$ where q_{3} is a primitive divisor of F_{n} and $a_{1} \in\{1,2\}$. By the assumption that $v_{p}\left(F_{z(p)}\right)=1$ for all p, we have $a_{3}=1$. Therefore $d\left(F_{n}\right)=8$ or 12 . For (3.2), if $n=p, p^{2}, p^{3}$ with $p>5$, then we obtain by Lemma 3.9 that F_{n} is squarefree, and so $d\left(F_{n}\right)=8$. If $n=5,5^{2}, 5^{3}$, then $\omega\left(F_{n}\right)=1,2,3$, respectively. So we only need to consider the case $n=5^{3}$ and we obtain $d\left(F_{125}\right)=16$. For (3.1), we have $F_{16}=3 \times 7 \times 47$ and $d\left(F_{16}\right)=8 ; F_{18}=2^{3} \times 17 \times 19$ and $d\left(F_{18}\right)=16 ; F_{2 p}$ is squarefree (by Lemma 3.9) and so $d\left(F_{2 p}\right)=8$. In any case, $d\left(F_{n}\right) \in\{8,12,16\}$. The other statement also follows from the above proof.

To obtain an analogue of Theorem 3.10 for L_{n}, we first prove the following results.
Lemma 3.11. Let p be an odd prime. Then p is a primitive divisor of L_{n} if and only if p is a primitive divisor of $F_{2 n}$.
Proof. This is probably well-known but we cannot find a reference for it, so we give a proof for completeness. Suppose p is a primitive divisor of L_{n}. Since $F_{2 n}=F_{n} L_{n}, p \mid F_{2 n}$. Suppose for a contradiction that $p \mid F_{m}$ for some $m<2 n$. By Lemmas 2.2 and $2.3, z(p) \mid m$ and $z(p)$ is even, so m is even. Let $m=2^{a} m_{1}$, where $a \geq 1, m_{1}$ is odd, and $2^{a-1} m_{1}=\frac{m}{2}<n$. Since $F_{m}=F_{m_{1}} L_{m_{1}} L_{2 m_{1}} L_{4 m_{1}} \cdots L_{2^{a-1} m_{1}}$ and p is a primitive divisor of L_{n}, we obtain $p \mid F_{m_{1}}$. So $z(p) \mid m_{1}$ which contradicts the fact that $z(p)$ is even and m_{1} is odd. For the converse, suppose p is a primitive divisor of $F_{2 n}$. Since $F_{2 n}=F_{n} L_{n}$ and $p \nmid F_{n}$, we have $p \mid L_{n}$. If $p \mid L_{m}$ for some $m<n$, then $p \mid F_{2 m}$, which is a contradiction. So p is a primitive divisor of L_{n}.

THE FIBONACCI QUARTERLY

Theorem 3.12. Suppose that $v_{p}\left(F_{z(p)}\right)=1$ for all p. Then the following statements hold.
(i) If $\omega\left(L_{n}\right)=3$ and $n=2^{a} p^{2}$ for some $a \geq 1$ and $p \geq 5$, then $L_{n}=p_{1}^{a_{1}} p_{2} p_{3}$ where p_{1}, p_{2}, p_{3} are distinct odd primes, p_{3} is a primitive divisor of L_{n}, and $a_{1} \in\{1,3\}$. In this case, $a_{1}=3$ if and only if $L_{2^{a}}=p$.
(ii) If $\omega\left(L_{n}\right)=3$ and $n=2^{a} p$ for some $a \geq 1$ and $p \geq 5$, then $L_{n}=p_{1}^{a_{1}} p_{2}^{a_{2}} p_{3}$ where p_{1}, p_{2}, p_{3} are distinct odd primes, and $\left\{a_{1}, a_{2}\right\}=\{1\}$ or $\{1,2\}$.
Proof. The proof of this theorem is similar to that of Theorem 3.3, so we give fewer details. For (i), we have $L_{2^{a}}\left|L_{2^{a} p}\right| L_{n}$ and each of them has a primitive divisor. So $L_{2^{a}}=p_{1}$, $L_{2^{a} p}=p_{1}^{b_{1}} p_{2}$, and $L_{n}=p_{1}^{a_{1}} p_{2}^{a_{2}} p_{3}$, where p_{2} is a primitive divisor of $L_{2^{a} p}$ and p_{3} is a primitive divisor of L_{n}. Now we only need to show that $a_{1} \in\{1,3\}$ and $a_{2}=1$. Since $L_{2^{a}}=p_{1}$, we see that $p_{1} \neq 2,5$. So we have
$a_{1}=v_{p_{1}}\left(L_{n}\right)=v_{p_{1}}\left(2^{a} p^{2}\right)+v_{p_{1}}\left(F_{z\left(p_{1}\right)}\right)=v_{p_{1}}\left(p^{2}\right)+1=1$ or 3 , and $a_{1}=3 \Leftrightarrow p_{1}=p \Leftrightarrow L_{2^{a}}=p$.
In addition, $p_{2} \neq 2,5$ and $p_{2}+1 \geq z\left(p_{2}\right)=2^{a+1} p \geq 2 p-1>p+1$, where the equality $z\left(p_{2}\right)=2^{a+1} p$ is obtained by Lemma 3.11. Therefore $a_{2}=v_{p_{2}}\left(L_{n}\right)=v_{p_{2}}\left(2^{a} p^{2}\right)+1=1$. This proves (i). The proof of (ii) is the same as (i), so we leave the details to the reader.
Theorem 3.13. Assume that $\omega\left(L_{n}\right)=3$ and $n=p_{1} p_{2}$ for some odd primes $p_{1}<p_{2}$. Then the following statements hold.
(i) If $p_{1} \geq 5$, then $L_{p_{1}}=q_{1}, L_{p_{2}}=q_{2}$, and $L_{n}=q_{1}^{a_{1}} q_{2} q_{3}^{a_{3}}$ where q_{1}, q_{2}, q_{3} are distinct odd primes, q_{3} is a primitive divisor of $L_{n}, a_{3} \geq 1$, and $a_{1} \in\{1,2\}$. In addition, $a_{1}=2$ if and only if $q_{1}=p_{2}$.
(ii) If $p_{1}=3$, then $L_{n}=4 q_{2} q_{3}^{a_{3}}$ where q_{2} and q_{3} are distinct odd primes, q_{3} is a primitive divisor of L_{n}, and $a_{3} \geq 1$.
Proof. The proof of this theorem is the same as that of Theorem 3.3. So we leave the details to the reader.

Theorem 3.14. Assume that $\omega\left(L_{n}\right)=3$ and $n=2^{a} \cdot 3$ for some $a \geq 1$. Then $L_{2^{a}}$ is a prime and $L_{n}=2 L_{2^{a}} p^{b}$ where $b \geq 1$ and p is a primitive prime divisor of L_{n}.
Proof. Since 2, $L_{2^{a}}$, and L_{n} divide L_{n} and each of them has a primitive divisor, we can obtain the desired result in the same way as other similar theorems.
Theorem 3.15. Suppose that $v_{p}\left(F_{z(p)}\right)=1$ for all p. If $\omega\left(L_{n}\right)=3$, then $d\left(L_{n}\right)=8,12,16$. Moreover, $\omega\left(L_{n}\right)=3$ and $d\left(L_{n}\right)=16$ occurs only when $n=18$ or $n=2^{a} p^{2}$ for some $p \geq 5$ such that $p=L_{2^{a}}$.
Proof. Assume that $\omega\left(L_{n}\right)=3$. By Theorem 3.5, $n=2^{a}, p, p^{2}, p^{3}, 2^{a} p, 2^{a} p^{2}, p q$ for some distinct odd primes p, q and $a \geq 1$. If $n=2^{a}, p, p^{2}, p^{3}$ with $p \geq 5$, then we obtain by Lemma 3.9 that L_{n} is squarefree and so $d\left(L_{n}\right)=8$. If $n=3,3^{2}, 3^{3}$, then $\omega\left(L_{n}\right)=1,2,3$, respectively, so we only need to consider the case $n=3^{3}$. We have $L_{27}=2^{2} \times 19 \times 5779$ and so $d\left(L_{27}\right)=12$. So it remains to consider the cases $n=2^{a} p, 2^{a} p^{2}, p q$.

Case 1. $n=p q$. Then by Theorem 3.13, $L_{n}=q_{1}^{a_{1}} q_{2} q_{3}^{a_{3}}$ where $a_{1} \in\{1,2\}$ and by the assumption that $v_{p}\left(F_{z(p)}\right)=1$ for all p, we also obtain $a_{3}=1$. Therefore $d\left(L_{n}\right)=8,12$.

Case 2. $n=2^{a} p$. This case is similar to Case 1. We apply Theorem 3.12 to obtain $d\left(L_{n}\right)=8$ or 12 .

Case 3. $n=2^{a} p^{2}$. If $p=3$, then we obtain by Theorem 3.5 that $n=18$, and so $L_{n}=2 \times 3^{3} \times 107$ and $d\left(L_{n}\right)=16$. So suppose $p \geq 5$. Then by Theorem 3.12, $L_{n}=p_{1}^{a_{1}} p_{2} p_{3}$, $a_{1} \in\{1,3\}$, and $a_{1}=3$ if and only if $L_{2^{a}}=p$. Then $d\left(L_{n}\right)=8$ or 16 , and $d\left(L_{n}\right)=16$ if and only if $L_{2^{a}}=p$. This completes the proof.

$$
\text { ON } \omega\left(F_{N}\right), \omega\left(L_{N}\right), d\left(F_{N}\right), d\left(L_{N}\right), F_{18}, \text { AND } L_{18}
$$

Corollary 3.16. Suppose that $v_{p}\left(F_{z(p)}\right)=1$ for all p. Then $\omega\left(F_{n}\right)=\omega\left(L_{n}\right)=3$ and $d\left(F_{n}\right)=$ $d\left(L_{n}\right)=16$ if and only if $n=18$.
Proof. This follows immediately from Theorems 3.10 and 3.15.
The integers $n \leq 300$ such that $\omega\left(F_{n}\right)=\omega\left(L_{n}\right)$ and $d\left(F_{n}\right)=d\left(L_{n}\right)$ are $n=1,4,5,7,10,11$, $13,14,17,18,26,46,47,58,73,77,85,89,103,107,121,139,167,179,181,187,205,221$, 233, 241, 247, 253, 257, 262, 269, 273, 281, 293, 295. More details are given in Table 1. The author will also upload more data on $\omega\left(F_{n}\right), \omega\left(L_{n}\right), d\left(F_{n}\right)$, and $d\left(L_{n}\right)$ on his ResearchGate account $[27,28]$ which will be freely downloadable to everyone.

4. Main Results II: The solutions to $\ell(n)=18$.

In this section, we find the solutions to the equation $\ell(n)=18$ and show a connection between them and F_{18}. For convenience, we sometimes write $P(n)$ to denote the largest prime factor of n if $n \geq 2$, and define $P(1)=1$. In addition, we let $\gamma(n)=\prod_{p \mid n} p$.
Theorem 4.1. Let n be a positive integer. Then $\ell(n)=18$ if and only if n satisfies one of the following conditions:

$$
\begin{align*}
& n=19,74,115, \tag{4.1}\\
& n=19 A \text { where } A \text { is a positive divisor of } \prod_{p \leq 17} p, \omega(A) \geq 2, \text { and } A \neq 6,10,14,15, \tag{4.2}\\
& n=19 m \gamma(m) B_{m} \text { where } m=2,3, \ldots, 17 \text { and } B_{m} \text { is a positive divisor of } \frac{\prod_{p \leq 17} p}{\gamma(m)}, \tag{4.3}\\
& n=108 C \text { where } C \text { is a positive divisor of } \prod_{5 \leq p \leq 19} p . \tag{4.4}
\end{align*}
$$

Proof. By using Lemmas 2.7 and 2.8, it is not difficult to verify the converse of this theorem. We show the details for (4.2) and (4.3) as follows. Suppose n satisfies (4.2). Then n is squarefree, n is not a prime, $n \neq 2 p$ for any prime p, and $n>19^{2}$. So we obtain by Lemma 2.7 that

$$
\ell(n)=19-\left\lfloor\frac{19^{2}}{n}\right\rfloor-1=18
$$

as required. Suppose n satisfies (4.3). Then n is not squarefree, $P(n)-1=18$, and

$$
\frac{n}{\gamma(n)}=\frac{19 m \gamma(m) B_{m}}{19 \gamma(m) B_{m}}=m<18
$$

Therefore we obtain by Lemma 2.8 that $\ell(n)=18$. The verification is similar for those n satisfying (4.1) or (4.4).

Now suppose that $\ell(n)=18$. Obviously, $n>1$ and we will show that n satisfies one of the conditions (4.1) to (4.4). We divide our calculations into several cases and apply Lemmas 2.7 and 2.8 repeatedly without further reference.

Case 1. n is prime. Then $n-1=\ell(n)=18$, so $n=19$, which satisfies (4.1).
Case 2. $n=2 p$ where p is an odd prime. If $p \equiv 3(\bmod 4)$, then we obtain $\frac{1}{2}(p+1)=$ $\ell(n)=18$, which implies $p=35$ contradicting the fact that p is a prime. So $p \equiv 1(\bmod 4)$. Then

$$
p-\left(\frac{p-1}{2}\right)-1=p-\left\lfloor\frac{p^{2}}{n}\right\rfloor-1=\ell(n)=18,
$$

which implies $p=37$. This leads to $n=74$ which is in (4.1).

THE FIBONACCI QUARTERLY

Case 3. $n=p_{1} p$ where $3 \leq p_{1}<p$. Then

$$
p-\left\lfloor\frac{p}{p_{1}}\right\rfloor-1=p-\left\lfloor\frac{p^{2}}{n}\right\rfloor-1=\ell(n)=18 .
$$

Therefore

$$
\begin{equation*}
p-\left\lfloor\frac{p}{p_{1}}\right\rfloor=19 . \tag{4.5}
\end{equation*}
$$

Since $3 \leq p_{1}<p$, we obtain $1 \leq\left\lfloor\frac{p}{p_{1}}\right\rfloor \leq\left\lfloor\frac{p}{3}\right\rfloor$. Therefore $p-\left\lfloor\frac{p}{p_{1}}\right\rfloor<p$ and $p-\left\lfloor\frac{p}{p_{1}}\right\rfloor \geq p-\left\lfloor\frac{p}{3}\right\rfloor>$ $\frac{2 p}{3}$. From this and (4.5), we see that $19<p<28.5$. The only prime p satisfying this inequality is $p=23$. Substituting $p=23$ in (4.5), we obtain $\left\lfloor\frac{23}{p_{1}}\right\rfloor=4$. So $4 \leq \frac{23}{p_{1}}<5$. The only prime p_{1} satisfying this inequality is $p_{1}=5$. This leads to $n=5 \cdot 23=115$.

Case 4. $n=p_{1} p_{2} \cdots p_{k}$ where $k \geq 3$ and $2 \leq p_{1}<p_{2}<\cdots<p_{k}$. For convenience, let $p=p_{k}$ and $A=\prod_{i=1}^{k-1} p_{i}$. Then $18=\ell(n)=p-\left\lfloor\frac{p^{2}}{n}\right\rfloor-1=p-\left\lfloor\frac{p}{A}\right\rfloor-1$. So $p-\left\lfloor\frac{p}{A}\right\rfloor=19$. Since $k \geq 3$, we obtain $A \geq(2)(3)=6$ and so

$$
19=p-\left\lfloor\frac{p}{A}\right\rfloor \geq p-\left\lfloor\frac{p}{6}\right\rfloor \geq p-\frac{p}{6}=\frac{5 p}{6} .
$$

In addition, $p \geq p-\left\lfloor\frac{p}{A}\right\rfloor$. Therefore $19 \leq p \leq \frac{(6)(19)}{5}$. The only prime in this range is $p=19$. Since $19=p-\left\lfloor\frac{p}{A}\right\rfloor=19-\left\lfloor\frac{19}{A}\right\rfloor$, we see that $A>19$. This leads to the solutions $n=19 A$ where A is a divisor of $\prod_{p<19} p, \omega(A) \geq 2$, and $A>19$, which correspond to (4.2).

Cases 1 to 4 give the solutions to $\ell(n)=18$ in squarefree numbers n. Next we consider the case when n is not squarefree. Recall again that we write $v_{p}(m)$ to denote the exponent of p in the prime factorization of m.

Case 5. n is not squarefree and $P(n)-1>\frac{n}{\gamma(n)}$. Then $18=\ell(n)=P(n)-1$. So $P(n)=19$. Therefore n is of the form $n=2^{a_{2}} 3^{a_{3}} \cdots 19^{a_{19}}=\prod_{p \leq 19} p^{a_{p}}$, where $a_{19} \geq 1, a_{p} \geq 0$ for $2 \leq p<19$, and $a_{p}>1$ for some p. For convenience, let $b_{p}=\max \left\{a_{p}-1,0\right\}$. Then

$$
18=P(n)-1>\frac{n}{\gamma(n)}=\prod_{p \leq 19} p^{b_{p}} .
$$

This implies that $a_{19}=1, a_{p}>1$ for some $p<19$, and $\prod_{p \leq 17} p^{b_{p}}<18$. So we only need to check for the solutions when $\prod_{p \leq 17} p^{b_{p}}=2,3, \ldots, 17$. We see that $\prod_{p \leq 17} p^{b_{p}}=2$ implies $a_{2}=2$ and $a_{p} \in\{0,1\}$ for $3 \leq p \leq 17$, which leads to the solutions $n=2^{2} \cdot B \cdot 19$ where B is a divisor of $\prod_{3 \leq p \leq 17} p$. In general, suppose $m \in\{2,3, \ldots, 17\}$ and $\prod_{p \leq 17} p^{b_{p}}=m$. If $p \mid m$, then $a_{p}-1=b_{p}=v_{p}(m)$, so $a_{p}=v_{p}(m)+1$. If $p \nmid m$, then $b_{p}=0$ and therefore $a_{p}=0$ or 1 . This implies that

$$
n=19 \prod_{p \leq 17} p^{a_{p}}=(19)\left(\prod_{\substack{p \leq 17 \\ p \mid m}} p^{v_{p}(m)+1}\right)\left(\prod_{\substack{p \leq 17 \\ p \nmid m}} p^{a_{p}}\right)=19 \cdot m \gamma(m) \cdot B_{m},
$$

where B_{m} is a divisor of $\frac{1}{\gamma(m)} \prod_{p \leq 17} p$. This leads to the solutions given in (4.3).
Case 6. n is not squarefree and $P(n)-1<\frac{n}{\gamma(n)}$. Then $\frac{n}{\gamma(n)}=\ell(n)=18$ and $P(n)-1<18$. So $P(n)<19$. Similar to Case 5 , we see that $n=2^{2} \cdot 3^{3} \cdot \prod_{5 \leq p \leq 17} p^{a_{p}}$, where $a_{p}=0$ or 1 for each $p=5,7, \ldots, 17$.

$$
\text { ON } \omega\left(F_{N}\right), \omega\left(L_{N}\right), d\left(F_{N}\right), d\left(L_{N}\right), F_{18}, \text { AND } L_{18}
$$

Case 7. n is not squarefree and $P(n)-1=\frac{n}{\gamma(n)}$. Then $\frac{n}{\gamma(n)}=P(n)-1=\ell(n)=18$. Similar to Case 6, we obtain $n=2^{2} \cdot 3^{3} \cdot \prod_{5 \leq p \leq 19} p^{a_{p}}$, where $a_{p}=0$ or 1 for $5 \leq p<19$ and $a_{19}=1$.

Combining Cases 6 and 7, we obtain the integers n of the form

$$
n=2^{2} \cdot 3^{3} \cdot \prod_{5 \leq p \leq 19} p^{a_{p}}=108 C \text { where } C \text { is a divisor of } \prod_{5 \leq p \leq 19} p .
$$

This completes the proof.
A surprising fact is that F_{18} is one of the solutions to the equation $\ell(n)=18$. Moreover, F_{18} is the only Fibonacci number satisfying this equation. It is straightforward to check all the solutions given in Theorem 4.1 and see that $F_{18}=2^{3} \cdot 17 \cdot 19$ satisfies (4.3) with $m=4$ and $B_{m}=17$, and that the other solutions are not Fibonacci numbers. Since there are quite a lot of solutions, this may take time. Therefore we give a shorter proof in the following corollary.
Corollary 4.2. $\ell\left(F_{m}\right)=18$ if and only if $m=18$.
Proof. By Lemma 2.8, the converse can be easily checked. So we suppose $\ell\left(F_{m}\right)=18$. Observe that if $\ell(n)=18$ and n does not satisfy (4.1), then $P(n) \leq 19$. Since 19,74 , and 115 are not Fibonacci numbers and $\ell\left(F_{m}\right)=18$, we obtain $P\left(F_{m}\right) \leq 19$. By using the table [2], it is easy to see that each prime $p \leq 19$ is a divisor of a Fibonacci number F_{m} for some $m \leq 18$. In addition, by Theorem 2.4, if $m>18$, then F_{m} has a primitive prime divisor larger than 19 . Since $P\left(F_{m}\right) \leq 19$, we see that $m \leq 18$. By considering the table [2] again, it is easy to see that $F_{1}, F_{2}, F_{3}, \ldots, F_{17}$ are not $19,74,115$, and are not divisible by 19 or 108 . So we obtain by Theorem 4.1 that they are not solutions to $\ell(n)=18$. Hence $m=18$ only.

Conclusion: F_{18} is the only Fibonacci number which is a solution to the equation $\ell(m)=18$. In addition, F_{18} is the only even Fibonacci number which has exactly three prime factors, two of which are twins. Furthermore, if $v_{p}\left(F_{z(p)}\right)=1$ for all p, then F_{18} and L_{18} are the only Fibonacci and Lucas numbers satisfying $\omega\left(F_{n}\right)=\omega\left(L_{n}\right)=3$ and $d\left(F_{n}\right)=d\left(L_{n}\right)=16$.

Remark. We obtained referee's comments and suggestions which we would like to add in this article. Luca and Stănică [15] give some heuristics about the number of prime factors of members of Lucas sequences. Using those heuristics, it would seem that perhaps of the cases presented in Theorem 3.1, only the case $n=p$ might have a chance to lead to infinitely many examples of Fibonacci numbers F_{n} with $\omega\left(F_{n}\right)=3$. Indeed, take $n=2 p$. Then $\omega\left(F_{2 p}\right)=3$ means that each of F_{p} and L_{p} has at most two prime factors. The heuristic is that this would happen for a random p with probability $\ll(\log p)^{O(1)} / p$ for each F_{p} and L_{p}, so assuming these events are independent their joint probability would be $\ll(\log p)^{O(1)} / p^{2}$. Since

$$
\sum_{p \geq 2} \frac{(\log p)^{O(1)}}{p^{2}}<\infty
$$

it would seems that there are only finitely many $n=2 p$ with $\omega\left(F_{n}\right)=3$. A similar analysis can be carried out for $n=p^{2}, n=p^{3}$, and $n=p q$. This heuristic can also be made about the conclusion of Theorem 3.5.

Acknowledgments

The author received financial support jointly from the Thailand Research Fund and from Faculty of Science Silpakorn University, grant number RSA5980040. The author also received financial support from Dalhousie University and the Atlantic Association for Research in

THE FIBONACCI QUARTERLY

the Mathematical Science (AARMS) for giving a talk in the 18th Conference on Fibonacci Numbers and Their Applications. Furthermore, the author is grateful to the organizers, the referees, the editors, and Professor George A. Hisert for giving him the Paul Bruckman Prize for best article and best presentation in the conference. Finally, the author thanks the referee for providing comments and suggestions and for pointing out the argument of Luca and Stănică in [15].

References

[1] Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539 (2001), 75-122.
[2] Brother A. Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972. Available online at https://www.fq.math.ca/fibonacci-tables.html.
[3] Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equations I, Fibonacci and Lucas perfect powers, Ann. of Math. (2), 163 (2006), 969-1018.
[4] Y. Bugeaud, F. Luca, M. Mignotte, and S. Siksek, On Fibonacci numbers with few prime divisors, Proc. Japan Acad. Ser. A Math. Sci., 81 (2005), 17-20.
[5] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$, Ann. of Math. (2), 15 (1913), 30-48.
[6] F. G. Dorais and D. Klyve, A Wieferich prime search up to 6.7×10^{15}, J. Integer Seq., 14.9 (2011), Article 11.9.2.
[7] R. K. Guy, Unsolved Problems in Number Theory, Springer, Third Edition, 2004.
[8] N. Khaochim and P. Pongsriiam, The general case on the order of appearance of product of consecutive Lucas numbers, Acta Math. Univ. Comenian. (N.S.), 87.2 (2018), 277-289.
[9] N. Khaochim and P. Pongsriiam, On the order of appearance of products of Fibonacci numbers, Contrib. Discrete Math., 13.2 (2018), 45-62.
[10] N. Khaochim and P. Pongsriiam, The period modulo product of consecutive Fibonacci numbers, Int. J. Pure Appl. Math., 90.3 (2014), 335-344.
[11] J. Klaška, Donald Dines Wall's conjecture, The Fibonacci Quarterly, 56.1 (2018), 43-51.
[12] T. Koshy, Fibonacci and Lucas numbers with Applications, Wiley, 2001.
[13] Y. Kunrui, p-adic logarithmic forms and a problem of Erdös, Acta Math., 211.2 (2013), 315-382.
[14] T. Lengyel, The order of Fibonacci and Lucas Numbers, The Fibonacci Quarterly, 33.3 (1995), 234-239.
[15] F. Luca and P. Stănică, Prime divisors of Lucas sequences and a conjecture of Skatba, Int. J. Number Theory, 1.4 (2005), 583-591.
[16] R. J. Mcintosh and E. L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp., 76.260 (2007), 2087-2094.
[17] K. Onphaeng and P. Pongsriiam, Subsequences and divisibility by powers of the Fibonacci numbers, The Fibonacci Quarterly, 52.2 (2014), 163-171.
[18] P. Phunphayap and P. Pongsriiam, Explicit formulas for the p-adic valuations of Fibonomial coefficients, J. Integer Seq., 21.3 (2018), Article 18.3.1
[19] P. Pongsriiam, Longest arithmetic progressions in reduced residue systems, J. Number Theory, 183 (2018), 309-325.
[20] P. Pongsriiam, Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation II, Mathematical Reports, to appear
[21] P. Pongsriiam, Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation, Commun. Korean Math. Soc., 32.3 (2017), 511-522.
[22] P. Pongsriiam, Integral values of the generating functions of Fibonacci and Lucas numbers, College Math. J., 48.2 (2017), 97-101.
[23] P. Pongsriiam, Fibonacci and Lucas Numbers which are one away from their products, The Fibonacci Quarterly, 55.1 (2017), 29-40.
[24] P. Pongsriiam, Factorization of Fibonacci numbers into products of Lucas numbers and related results, JP J. Algebra Number Theory Appl., 38.4 (2016), 363-372.
[25] P. Pongsriiam, Exact divisibility by powers of the Fibonacci and Lucas numbers, J. Integer Seq., 17.11 (2014), Article 14.11.2
[26] P. Pongsriiam, A complete formula for the order of appearance of the powers of Lucas numbers, Commun. Korean Math. Soc., 31.3 (2016), 447-450.

$$
\text { ON } \omega\left(F_{N}\right), \omega\left(L_{N}\right), d\left(F_{N}\right), d\left(L_{N}\right), F_{18}, \text { AND } L_{18}
$$

[27] P. Pongsriiam, Data for the number of divisors of Fibonacci and Lucas numbers, ResearchGate website, DOI: 10.13140/RG.2.2.28913.17762
[28] P. Pongsriiam, Project Fibonacci numbers and the order of appearance, ResearchGate website available at https://www.researchgate.net/project/Fibonacci-numbers-and-the-order-of-appearance
[29] P. Pongsriiam, The order of appearance of factorials in the Fibonacci sequence and certain Diophantine equations, Period. Math. Hungar., 79.2 (2019), 141-156.
[30] PrimeGrid, Wall-Sun-Sun prime search, http://www.primegrid.com.
[31] C. L. Stewart, On divisors of Lucas and Lehmer numbers, Acta Math., 211.2 (2013), 291-314.
[32] P. Stumpf, A short note on reduced residues, Integers, 17 (2017), Article A4.
[33] Z. H. Sun and Z. W. Sun, Fibonacci numbers and Fermat's last theorem, Acta Arith., 60.4 (1992), 371-388.
[34] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section: Theory and Applications, Dover Publications, 2007.
[35] D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67.6 (1960), 525-532.
MSC2010: 11B39, 11D99
Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand

E-mail address: prapanpong@gmail.com, pongsriiam_p@silpakorn.edu

THE FIBONACCI QUARTERLY

n	factorization of n	$\omega\left(F_{n}\right)$	$\omega\left(L_{n}\right)$	$d\left(F_{n}\right)$	$d\left(L_{n}\right)$
1	1	0	0	1	1
4	2^{2}	1	1	2	2
5	5	1	1	2	2
7	7	1	1	2	2
10	$2 \cdot 5$	2	2	4	4
11	11	1	1	2	2
13	13	1	1	2	2
14	$2 \cdot 7$	2	2	4	4
17	17	1	1	2	2
18	$2 \cdot 3^{2}$	3	3	16	16
26	$2 \cdot 13$	2	2	4	4
46	$2 \cdot 23$	3	3	8	8
47	47	1	1	2	2
58	$2 \cdot 29$	3	3	8	8
73	73	2	2	4	4
77	$7 \cdot 11$	4	4	16	16
85	$5 \cdot 17$	4	4	16	16
89	89	2	2	4	4
103	103	3	3	8	8
107	107	2	2	4	4
121	11^{2}	2	2	4	4
139	139	3	3	8	8
167	167	2	2	4	4
179	179	3	3	8	8
181	181	3	3	8	8
187	$11 \cdot 17$	4	4	16	16
205	$5 \cdot 41$	6	6	64	64
221	$13 \cdot 17$	4	4	16	16
233	233	3	3	8	8
241	241	3	3	8	8
247	$13 \cdot 19$	5	5	32	32
253	$11 \cdot 23$	5	5	32	32
257	257	3	3	8	8
262	$2 \cdot 131$	4	4	16	16
269	269	4	4	16	16
273	$3 \cdot 7 \cdot 13$	9	9	768	768
281	281	3	3	8	8
293	293	2	2	4	4
295	$5 \cdot 59$	9	9	512	512

Table 1. The integers $n \in[1,300]$ such that $\omega\left(F_{n}\right)=\omega\left(L_{n}\right)$ and $d\left(F_{n}\right)=d\left(L_{n}\right)$

