
Problem Proposals

Compiled by Clark Kimberling

These twelve problems were posed by participants of the Eighteenth International Confer-
ence on Fibonacci Numbers and Their Applications, held at Dalhousie University, Halifax,
Nova Scotia. Part 1 gives the proposals, and Part 2 gives notes and solutions received before
December 1, 2018.

Part 1. Proposals

Problem 1, posed by Marjorie Bicknell Johnson:
Two Fibonacci numbers in a Pythagorean triple.

Are (3, 4, 5) and (5, 12, 13) the only Pythagorean triples that contain two Fibonacci num-
bers?

Problem 2, posed by Burghard Herrmann:
A winner problem.

Let γ ∈ (0, 1/2) be a noble number, and consider the simple phyllotactic system with diver-
gence angle γ turns and plastochrone distance h ∈ R+ in the sense of Turing [1]. Show that
the first and second principal numbers (called “the winners”) are adjacent elements of the
generalized Fibonacci sequence associated with γ provided that h is sufficiently small.

Here are some details. To say that γ is noble means that for the continued fraction of γ,
with partial quotients cn, we have, for some n0 ≥ 1,

γ = [0, c1, . . . , cn0 , 1̄], cn0 ≥ 2.

The generalized Fibonacci sequence (Gn) is defined for n ≥ 1 as follows: Gn = qn+n0−2
where the denominators of convergents are recursively defined via q0 = 1, q1 = c1, and
qn = qn−2 + cnqn−1 for n ≥ 2. The “winners” with respect to γ and h are defined by the
minimal distance

δ(n) = min(‖({nγ}, nh)‖, ‖(1− {nγ}, nh)‖)

where ‖(x, y)‖ =
√
x2 + y2 and {} denotes fractional part. The problem is to show that there

exists h0 > 0 such that for every h ∈ (0, h0) there exists n ≥ 1 such that the winners are Gn
and Gn+1, i.e., for every positive integer m except Gn and Gn+1,

δ(m) ≥ max(δ(Gn), δ(Gn+1)).
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Problem 3, posed by Russell Hendel:
Identities.

First some background. In the Halifax Fibonacci conference and these Proceedings, the idea
of a Tagiuri-generated family of identities has been introduced. The identities of a Tagiuri-
generated family may have an arbitrarily large number of summands. Moreover, they are
necessarily valid because each arises from

i) a trivially true initial identity, such as P = 3P − 2P, by
ii) application of the Tagiuri identity substitution, and the Tagiuri identity is also true.
Therefore the proof of an identity in a Tagiuri-generated family is the one-line statement

that the identity is true because it is Tagiuri-generated by substituting the true Tagiuri identity
to a trivially true start identity. In contrast to this one-line proof, an arbitrary identity in
several dozen summands may appear time-consuming to prove.

The open problem is as follows: produce a method so that, given an arbitrary Fibonacci
identity in one variable, it is possible to ascertain whether it belongs to some infinite family
of identities such as a Tagiuri-generated family.

Problem 4, posed by William Webb and Curtis Cooper:
High-degree “nice” Fibonacci identities.

Two particularly simple identities are the fourth degree identity

1 + Fn−2Fn−1Fn+1Fn+2 − F 4
n = 0

and the fifth degree identity

F 2
nF

3
n+5 − F 3

n+1F
2
n+6 + (−1)nL3

n+3 = 0.

Both identities, when written as A = 0, have only three terms in the expression A. Restricting
ourselves to Fibonacci and Lucas numbers, let

S1 = {Fan+b, (−1)n, 1}
and

S2 = {Fan+b, Lcn+d, (−1)n, 1}.
A term in an identity is a product of elements in S1 or S2. The parameters a, b, c, d can

be any fixed integer values.
For our purposes, an allowed expression A is a nontrivial linear combination of terms with

no common factor from S1 or S2 except 1.

1. Find degree d ≥ 5 identities using S1 with 3 terms.
2. Find degree d ≥ 6 identities using S2 with 3 terms.
3. For a given degree d, what is the least number of terms in an identity?
4. For what degrees d are there no identities with 3 terms?
5. Generalize to arbitrary second order recurrences or higher order recurrences.
6. Find a systematic method to find simple identities of this kind.

Problem 5, posed by Clark Kimberling:
All coefficients positive.

For r > 0, define the sequence (cn) by

c0 + c1x+ c2x
2 + · · · = 1

brc+ b2rcx+ b3rcx2 + · · ·
.

Prove or disprove:
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1. If r ∈ [3/2, 5/3), then ck > 0 if and only if k is even.
2. If r ∈ [3/2, 5/3), then limn→∞ ck+1/ck exists.
3. A minimal case: let (dk) be the sequence (ck) in the case r = 8/5. Then |dk| ≤ |ck| for

all r in [3/2, 5/3).

Problem 6, posed by J. C. Saunders:
Viswanath’s constant.

Consider a random Fibonacci sequence (fn) defined by f1 = f2 = 1, and for all n ≥ 3 by
fn = fn−1 ± fn−2. Viswanath showed in 2000 that

lim
n→∞

|fn|1/n = 1.13198824 . . .

with probability 1; viz., + or − chosen at each step with probability of 1/2 for each. Determine
whether this constant is algebraic, and find a closed form for it.
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Problem 7, posed by Larry Ericksen:
Two sequences.

Let n be a nonnegative integer. Define s2(n) to be the base 2 digital sum of n. That is,
s2(0) = 0, s2(1) = 1, and for n ≥ 1,

s2(2n) = s2(n) and s2(2n+ 1) = s2(n) + 1.

Define a(n) to be the nth Stern number. That is, a(0) = 0, a(1) = 1, and for n ≥ 1,

a(2n) = a(n) and a(2n+ 1) = a(n) + a(n+ 1).

(1) Prove that for nonnegative integers n, a(n) ≥ s2(n).
(2) Prove that for nonnegative integers n, a(n) = s2(n) if and only if n = 2i − 2j for

i ≥ j ≥ 0.
(3) Let r be a nonnegative integer. Prove that

max
2r≤n<2r+1

(a(n)− s2(n)) = Fr+2 −
⌊
r + 3

2

⌋
,

where Fr is the rth Fibonacci number.

Problem 8, posed by Sam Northshield:
Enumerating some algebraic rationals.

For α = 2 cos( π
N+1), and x0 =∞, let

xn := α2

(
2νN (n) + 1− 1

xn−1

)
.
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Then {xn : n ≥ 1} = Q(α)+. The cases N = 2, 3, and 5 were covered in my talk (where
α2 = 1, 2, 3 respectively). I have recently shown the N = 4 case (where α = φ). What about
N > 5?

Problem 9, posed by Sam Northshield:
Zeros on the unit circle.

Some of the sequences (an, bn, cn, dn) arising in my talk had respective generating functions
satisfying:

A(x2)

A(x)
= 1 + x+ x2,

B(x3)

B(x)
= 1 +

√
2x+ x2 +

√
2x3 + x4,

C(x5)

C(x)
= 1 +

√
3x+ 3x2 +

√
3x3 + x4 +

√
3x5 + 2x6 +

√
3x7 + x8,

D(x4)

D(x)
= 1 + φx+ φx2 + x3 + φx4 + φx5 + x6.

The first two polynomials have zeros on the unit circle. Empirically, so does the third.
Problem: show that the last two polynomials have all their zeros on the unit circle.

Problem 10, posed by Sam Northshield:
Infinite Fibonacci word.

Define
νF (n) = b(n+ 1)φc − bnφc − 1,

this being the Fibonacci word, OEIS sequence A005614 = (1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, . . .).
Let R0 = φ, and

Rn = 2νF (n) + 1− 1

Rn−1
for n > 0. For example, for n = 1, 2, . . . , 8, the numbers Rn are

4− φ, (8− φ)/11, (8− φ)/5, (26− φ)/11, (34− φ)/59, (24− φ)/19, (6− φ)/29, −2− φ.
Let s =

√
5. Prove or disprove:

(1) Every Rn has the form (2a− 1− s)/(2b), where a and b are integers; and
(2) if b divides a2 + a− 1, then (2a+ 1− s)/(2b) = Rn for some n.

Problem 11, posed by Dale Gerdemann:
Multiples of Lucas numbers.

For every n,
5Fn = Fn+3 + Fn−1 + Fn−4,

and there are similar formulae for other multiples of Fibonacci numbers, which can be found
using the greedy algorithm. Similar formulae can be found for other Lucas sequences. For
example, (with a0 = 0 and a1 = 1, here and elsewhere in this problem), the sequence A007482
given by an = 3an−1 + 2an−1 satisfies the formula

5an = an+1 + an + an−1 + 2an−2

and the sequence A007070 given by an = 4an−1 − 2an−1 satisfies the formula

5an = an+1 + an + an−1 + an−2.
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However for an = 2an−1 + 4an−1 (A063727), the greedy algorithm fails to yield a general
formula for 5an. For example,

a11 = a11+1 + a11+0 + 2a11−1 + a11−2 + a11−3 + 2a11−4 + 3a11−6

and

a12 = a12+1 + a12+0 + 2a12−1 + a12−2 + a12−3 + 2a12−4 + 3a12−6 + 2a12−9 + 2a12−10.

What generalization can be made here? When is it possible to find greedy sum identities
for multiples of Lucas numbers?

Problem 12, posed by Clark Kimberling and Peter Moses:
Find a formula.

Let x and y be positive real variables and a0 = 1, a1 = 2. Define

an = xan−1 − yan−2,
and let y(x) = least real number y such that an > 0 for all n ≥ 0. Find and verify a formula
for y(x), and generalize (e.g., vary the initial conditions, or formulate similar functions of one
or more real variables using higher-order recurrences).

Part 2. Solutions and Notes

1. Notes for Problem 2

The following conjecture provides an extensive solution to Problem 2.

Conjecture. Let γ ∈ (0, 1/2) be a noble number and h a positive real number. The gener-
alized Fibonacci sequence G1, G2, . . . as well as δ(m) for positive integers m are defined as in
Problem 2. For n ≥ 3 it holds that if h ∈ [1/tn+1, 1/tn] then the winners are Gn and Gn+1,
where Φ = (

√
5 + 1)/2 is the number of the golden ratio and

tn := Φn−1(G2 +G1/Φ)

√
(G2

n+1 −G2
n−1)/

√
5.

Moreover, if G2 < G1Φ
2
√

5, then for h ∈ [1/t3, 1/t2] the winners are G2 and G3.

Note that t2 < t3 < t4 < . . ., so that 1/t2 > 1/t3 > 1/t4 > . . . Thus, the conjecture solves
the problem for h0 = 1/t3. Moreover, if G2 < G1Φ

2
√

5, then the conjecture solves the problem
for h0 = 1/t2.

The biologically most relevant divergence angles are γ = [0, 2, 1̄] (≈ 137.5◦) and γ = [0, 3, 1̄]
(≈ 99.5◦). For these examples the maximal h0 such that for h ∈ [1/t2, h0] the winners are G1

and G2 has been determined as follows.

Example 1. γ = [0, 2, 1̄] represents the golden angle of approximately 137.5◦. From G1 = 1

and G2 = 2 it follows t2 = Φ(2 + 1/Φ)
√

8/
√

5. It has been proved that for h ≥ 1/t2 ad

infinitum the winners are G1 and G2.

Example 2. γ = [0, 3, 1̄] represents the ”Lucas angle” of approximately 99.5◦. From G1 = 1

and G2 = 3 it follows t2 = Φ(3+1/Φ)
√

3
√

5. It has been proved that h0 = 1/((3+1/Φ)
√√

5)
is maximal such that for h ∈ [1/t2, h0] the winners are G1 and G2.

There is a partial solution to Problem 2 ([1], Proposition 5) in which “winners” correspond
to “Voronoi parastichy pairs”.
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2. Notes for Problem 5

Here is an example. If r = 3/2, the series in question is simply

1

1 + 4x2 + 7x4 + 10x6 + · · ·+ x(3 + 6x2 + 9x4 + 12x6 + · · · )
,

which has the following expansion:

1− 3x+ 5x2 − 9x3 + 8x4 − 36x5 + · · · .
The sequence of coefficients is given in OEIS by A279634, which also gives a guide to other
examples for rational r. For irrational r, see A078140, in which r is the golden ratio.

3. First Solution for Problem 7, by Curtis Cooper and Larry Ericksen

1. Statement of the problem

A three-part problem was proposed by Larry Ericksen, describing the relationships between
the Stern sequence and the base 2 digital sum function. First we restate the problem and then
we will prove each part of the problem.

Problem 7a. Let n be a nonnegative integer. Define s2(n) to be the base 2 digital sum of n.
That is, s2(0) = 0, s2(1) = 1, and for n ≥ 1,

s2(2n) = s2(n) and s2(2n+ 1) = s2(n) + 1.

Define a(n) to be the nth Stern number. That is, a(0) = 0, a(1) = 1, and for n ≥ 1,

a(2n) = a(n) and a(2n+ 1) = a(n) + a(n+ 1).

(1) Prove that for nonnegative integers n, a(n) ≥ s2(n).
(2) Prove that for nonnegative integers n, a(n) = s2(n) if and only if n = 2i − 2j for

i ≥ j ≥ 0.
(3) Let r be a nonnegative integer. Prove that

max
2r≤n<2r+1

(a(n)− s2(n)) = Fr+2 −
⌊
r + 3

2

⌋
,

where Fr is the rth Fibonacci number.

2. Proof of (1)

Proof. First, we note that a(0) = 0 = s2(0). We will prove that for nonnegative integers r and
2r ≤ n < 2r+1, a(n) ≥ s2(n). The proof is by induction on r.

Base Step. r = 0.
a(1) = 1 = s2(1).

Therefore, for all n such that 20 ≤ n < 21, a(n) ≥ s2(n). Thus, the base step is true.

Induction Step. Assume that for some integer r ≥ 0, if 2r ≤ n < 2r+1, then a(n) ≥ s2(n).
We will prove this statement for r + 1. Let n be an integer such that 2r+1 ≤ n < 2r+2.
n is even. That is, n = 2m for some 2r ≤ m < 2r+1. Then, by the induction hypothesis,

a(2m) = a(m) ≥ s2(m) = s2(2m).
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Therefore, the result is true for even n.
n is odd. That is, n = 2m+ 1 for some 2r ≤ m < 2r+1. Then, by the induction hypothesis

and the fact that if m ≥ 1, a(m+ 1) ≥ 1,

a(2m+ 1) = a(m) + a(m+ 1) ≥ s2(m) + 1 = s2(2m) + 1 = s2(2m+ 1).

Hence the result is true for odd n. Therefore, for all n such that 2r+1 ≤ n < 2r+2, we have
a(n) ≥ s2(n). Thus, the induction step is true.

Therefore, by mathematical induction, (1) is true for all nonnegative integers n. �

3. Proof of (2)

Proof. (⇐= ) First, if i = j ≥ 0, then n = 2i− 2j = 2i− 2i = 0, so a(0) = 0 = s2(0). Now, let
n = 2i− 2j , where i > j ≥ 0. Then, n = 2j(2i−j − 1), so that the base 2 representation of n is

11 · · · 1︸ ︷︷ ︸
i−j

00 · · · 0︸ ︷︷ ︸
j

.

Therefore, s2(n) = i− j.
Also, a(n) = a(2i−j − 1) = a(2i−j−1) + a(2i−j−1 − 1) = 1 + a(2i−j−1 − 1). Continuing this

process, in the last steps, we have

a(n) = i− j − 2 + a(3) = i− j − 2 + a(1) + a(2) = i− j − 2 + 1 + 1 = i− j.

Therefore, a(n) = s2(n).
( =⇒ ) First, we handle the cases n = 0, n = 1, n = 2, and n = 3. For n = 0, a(0) = 0 =

s2(0) and n = 0 = 2i − 2i for all nonnegative integers i. For n = 1, a(1) = 1 = s2(1) and
n = 1 = 21−20. For n = 2, a(2) = 1 = s2(2) and n = 2 = 22−21. For n = 3, a(3) = 2 = s2(3)
and n = 3 = 22 − 20. Therefore, the result is true for n = 0, n = 1, n = 2, and n = 3. Now
consider the following lemma.

Lemma. Let r ≥ 2 be an integer such that 2r ≤ n < 2r+1 and a(n) = s2(n). Then n =
2r+1 − 2i for 0 ≤ i ≤ r.

n is odd. We first note that the only odd n in the interval 2r ≤ n < 2r+1 of the form 2i− 2j

is 2r+1− 1. And a(2r+1− 1) = r+ 1 and s(2r+1− 1) = r+ 1. Also, note that a(2r + 1) = r+ 1
and s2(2

r + 1) = 2. This proves the lemma for the odd numbers 2r + 1 and 2r+1 − 1 in the
interval. To prove the lemma for the other odd n in the interval, we will prove the following
statement.

For odd n such that 2r + 1 < n < 2r+1 − 1, we have a(n) ≥ r + 1. Once this statement is

proven, we note that for the odd n in the statement, s2(n) < r+ 1. So, the lemma will be true
for all odd n in the interval 2r ≤ n < 2r+1. The proof of the statement will be by induction
on r.

Base Step. r = 2: The statement is vacuously true. r = 3: a(11) = 5 and a(13) = 5, so the
statement is true.

Induction Step. Let r ≥ 3 and assume the statement is true for r. We will prove the
statement for r + 1.

Let n be odd such that 2r+1+1 < n < 2r+2−1. Then n = 2k+1 for some 2r < k < 2r+1−1.
And a(n) = a(2k+ 1) = a(k) + a(k+ 1). But either k or k+ 1 is odd and between 2r + 1 and
2r+1− 1. So the a value of either k or k+ 1 is greater than or equal to r+ 1 and the a value of
the other one is greater than or equal to 1. Therefore, a(n) ≥ r + 2. This is what we wanted
to prove, so this completes the proof of the induction step.
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Therefore, by mathematical induction, the statement is true for the other odd n. Hence, this
completes the proof of the odd n case in the lemma. n is even. Assume a(n) = s2(n) for some
2r ≤ n < 2r+1 and assume that n = 2e ·m, where e ≥ 1 and m is odd. But a(2em) = a(m)
and s2(2

em) = s2(m). Since a(n) = s2(n), a(m) = s2(m). But, the only odd m such that
a(m) = s2(m) are m = 2i − 1, where i ≥ 1. Therefore, n = 2em = 2e(2i − 1) = 2e+i − 2e.
Hence the result is true for even n, and thus, the lemma is true for r.

Therefore, by the principle of mathematical induction, the lemma is true for all nonnegative
integers r. This completes the proof of (2). �

4. Proof of (3)

Before we begin the proof of (3), we need the following statements and definitions. In each
interval 2r ≤ m ≤ 2r+1, the maximum value of a(m) is the Fibonacci number Fr+2. It was
shown by Lehmer [2] that this maximum occurs at m ∈ {αr, βr} as defined below.

Definition. In row r ≥ 0 for 2r ≤ m ≤ 2r+1, maximums a(m) = Fr+2 occur at m ∈ {αr, βr}
given explicitly by

αr =
2r+2 − (−1)r

3
, βr =

5 · 2r + (−1)r

3
.

Also, let α1 = 3 and β1 = 3. Then for a positive integer r, we have the recursions

αr+1 = 2 · αr + (−1)r, βr+1 = 2 · βr + (−1)r+1.

Let r be a positive integer. Note that if r is odd, the base 2 representation of αr is

1 01 · · · 01︸ ︷︷ ︸
b r
2
c

1,

and if r is even, the base 2 representation of αr is

1 01 · · · 01︸ ︷︷ ︸
b r
2
c

.

Also, if r is odd, the base 2 representation of βr is

11 01 · · · 01︸ ︷︷ ︸
b r−1

2
c

,

and if r is even, the base 2 representation of βr is

11 01 · · · 01︸ ︷︷ ︸
b r−1

2
c

1.

Therefore,

s2(αr) =

⌊
r + 1

2

⌋
+ 1, s2(βr) =

⌊r
2

⌋
+ 2.

Then, for the Fibonacci values Fr+2 at locations m ∈ {αr, βr} in 2r ≤ m < 2r+1, we obtain
the maximum discrepancies in part (3) such that

a(αr)− s2(αr) = Fr+2 −
⌊
r + 3

2

⌋
,

a(βr)− s2(βr) ≤ Fr+2 −
⌊
r + 3

2

⌋
,
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with equality in the βr case for odd r.

Next, we restate a theorem in [1] for the second largest values in rows of Stern sequences.

Theorem. For all r ≥ 4 in rows 2r ≤ n < 2r+1, the second largest values M2(r) are given by
Fr+2 − Fr−3 = 2Fr + Fr−2 = Fr + Lr−1 for Fibonacci numbers Fn and Lucas numbers Ln.

Table 1 from [1] lists actual values in rows of Stern sequences, with the largest as M1(r) and
second largest as M2(r). We also define d(r) and e(r) in Table 1 by the following identities:

d(r) = Fr+2 −
⌊
r + 3

2

⌋
as the discrepancy formula in (3),

e(r) = d(r)−M2(r) = M1(r)−
⌊
r + 3

2

⌋
−M2(r) = Fr+2 −

⌊
r + 3

2

⌋
−M2(r).

Table 1. M1(r), d(r), M2(r), e(r) in rows 3 ≤ r ≤ 12.

row r 3 4 5 6 7 8 9 10 11 12

M1(r) 5 8 13 21 34 55 89 144 233 377
d(r) 2 5 9 17 29 50 83 138 226 370

M2(r) 4 7 12 19 31 50 81 131 212 343
e(r) −2 −2 −3 −2 −2 0 2 7 14 27

e(r) + 2 0 0 −1 0 0 2 4 9 16 29

We note the minimum s2(n) is at least 2 for n between the ends of the rows. Identity (3) is
true in any row r, if e(r) + 2 ≥ 0. Thus, the greatest M2(r)− s2(n) possible challenge to (3)
would be if d(r) − (M2(r) − 2) < 0. Seen in the last row of Table 1, this possibility happens
only in row r = 5 which had e(r) + 2 = −1.

However, a quick check of the actual values a(n) and s2(n) in row r = 5 showed that when
a(n) = M2(r) = 12, then s2(n) = 4, and by [1] when a(n) = M3(r) = 11, then s2(n) ∈ {3, 5}.
Therefore, even in row r = 5 we have 12− 4 = 8 < 9 = d(5) and 11− 3 = 8 < 9 = d(5).

Proof of (3). For values a(n) and s2(n) in n ∈ [0, 2r+1) through row r = 12, we verified (3) as

max
2r≤n<2r+1

(a(n)− s2(n)) = Fr+2 −
⌊
r + 3

2

⌋
.

Now assume r > 12. We want to prove that no other values a(n)−s2(n) exceed that maximum
in (3). To show this, let m be a value between 2r + 1 and 2r+1 − 1, where m 6= αr, βr. Then,
a(m)− s2(m) ≤M2(r)− 2. Hence,

Fr+2 −
⌊
r + 3

2

⌋
− (a(m)− s2(m)) ≥ Fr+2 −

⌊
r + 3

2

⌋
− (M2(r)− 2)

= Fr+2 −
⌊
r + 3

2

⌋
− (Fr+2 − Fr−3 − 2)

= Fr−3 −
⌊
r + 3

2

⌋
+ 2 ≥ 0.

Thus, with the above inequality proven, we have

max
2r≤n<2r+1

(a(n)− s2(n)) = Fr+2 −
⌊
r + 3

2

⌋
.
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This completes the proof of (3). �

Note: The recursion for d(r) and e(r) could start at r = 8, where d(8) = 50 and e(8) = 0
from Table 1. Then the recursions for r ≥ 9 are

d(r) = d(r−1) + Fr−5 +

{
0 for even r,
1 for odd r,

e(r) = e(r−1) + Fr +

{
0 for even r,
−1 for odd r.

Recursion e(r) also shows that subsequent e(r) values are positive and become larger for r ≥ 9.
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4. Second Solution for Problem 7, by Tanay Wakhare

The Stern sequence is recursively defined by a0 = 0, a1 = 1 and for n ≥ 1 as

a2n = an,

a2n+1 = an + an+1,

where we abbreviated an = a(n) for convenience.
We also define s2(n) as the sum of the binary digits of n, abbreviated as sn, which is

completely characterized by the recurrences

s2n = sn,

s2n+1 = sn + 1,

with s1 = 1. The Stern sequence achieves relative maxima at the Jacobstal numbers

J(n) =
1

3
(2n − (−1)n) ,

with aJ(n) = Fn, where Fn is the n-th Fibonacci number. However, sn has relative maxima

when the underlying bit string is all 1s, so that n = 2N − 1 and s2N−1 = N .
We now define the discrepancy δn := an − sn, which satisfies the recurrences

δ2n = δn,

δ2n+1 = δn + an+1 − 1,

with initial conditions δ0 = δ1 = 0.
We will combine parts (1) and (2) of the problem by Larry Ericksen into the following

theorem.

Theorem 4.1. We have an ≥ sn, with equality if and only if n = 2N or n = 2N − 2M for
some integers N > M .

Proof. In general, since an+1 ≥ 1, we have δn ≥ 0 and an ≥ sn.
To find examples of equality, we need to characterize indices such that δn = 0. First, we

note that n = 2N works since we successively apply the top recurrence. We can now prove
that at n = 2N −2M , δn = 0. We induct on N , then divide out by powers of two until we have

δn = δ2N−M−1 = δ2N−M−1−1 + a2N−M − 1 = δ2N−M−1−1 = 0.
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If we consider any index n which is a difference of powers of 2, we successively divide out
by 2 until we’re left with an at an index of the form n = 2N − l, where l is odd and l 6= 1.
Applying the bottom recurrence gives

δn = δ2N−1− l+1
2

+ a2N−1− l−1
2
− 1.

Since l 6= 1, we’re left with a at an index which isn’t a power of two. However, an = 1 if and
only if n = 2N (else a2n+1 = an + an+1 ≥ 2). Therefore, a2N−1− l−1

2
≥ 2 and δn ≥ 1. �

5. Third Solution for Problem 7, by Karyn McLellan

1. Proof of (1) and (2)

Recall the first two statements in the problem posed by Larry Ericksen:

(1) Prove that for nonnegative integers n, a(n) ≥ s2(n).
(2) Prove that for nonnegative integers n, a(n) = s2(n) if and only if n = 2i − 2j for

i ≥ j ≥ 0.

Proof. We will begin by proving that if n = 2i− 2j then a(n) = s2(n). Note that the values of
n = 2i − 2j give OEIS sequence A023758: 0, 1, 2, 3, 4, 6, 7, 8, 12,. . . . According to the entry,
this is also the sequence of numbers whose binary representations are nonincreasing.

Recall that the nth Stern number a(n) gives us the number of hyperbinary representations of
n−1. In listing all such representations for a given n we can use the following two operations:

02↔ 10

12↔ 20

We are changing two smaller numbers into a bigger number (or vice versa). There are only
two possible operations using two digits. Note that 22 at the beginning of a representation
requires a carry to three digits, which can be accomplished by writing as 022 → 102 → 110,
for example. All possible hyperbinary representations are connected via a chain or a tree
using these two operations. We are simply shifting one 2k term into two 2k−1 terms via the
operations, so can reach any combination of powers of 2 in this way.

Now, we are interested specifically in numbers of the form n = 2i − 2j . The values of n− 1
give OEIS sequence A089633 and according to the entry this is also the sequence of numbers
whose binary representations contain at most one 0. Our aim is to find all hyperbinary
representations of numbers of this form, and we will start with a simple example to illustrate.

Let n = 30 = 111102, which is 32− 2. The hyperbinary representations of 29 are

11101→ 11021→ 10221→ 2221,

and so a(30) = 4 = s2(30). Subtracting 1 from 30 removes one of the initial ones from the
binary representation and brings us to the first hyperbinary representation of 29. The rest of
the 1’s in the binary representation of 30 (the first 3 in 29) each give us a new hyperbinary
representation of 29, using the 10→ 02 operation.

We can generalize this to all n of the form 2i − 2j . We know the binary representation of
n is nonincreasing, so it has form 1 . . . 110 . . . 0 and s2(n) 1’s. Subtracting 1 gives n − 1 =
1 . . . 101 . . . 12, which has exactly one 0 and s2(n) − 1 initial 1’s. We consider this the first
hyperbinary representation of n − 1. Each of the initial 1’s uses the operation 10 → 02,
introducing a 0 where the 1 was so the process can continue. This creates the rest of the
hyperbinary representations for a total of s2(n), and hence a(n) = s2(n). We must note
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that at no point in the process are any other hyperbinary representations possible; from the
starting point 1 . . . 101 . . . 1 and all intermediate steps 1 . . . 102 . . . 21 . . . 1 the only move to
make is 10→ 02, and when we reach 2 . . . 21 . . . 1 there is nowhere to go but back. Note, that
if n = 10 . . . 02 then n − 1 = 01 . . . 12, in which case there are no operations to perform and
a(n) = s2(n) = 1. This completes the proof that if n = 2i − 2j then a(n) = s2(n).

Next we will prove that if n 6= 2i − 2j then a(n) > s2(n). We will start by breaking the
binary representation of n into non-increasing blocks of the form 1 . . . 10 . . . 0 so that

n = 1 . . . 10 . . . 0 | 1 . . . 10 . . . 0 | . . . | 1 . . . 110 . . . 0.

We must have at least two blocks because the binary representation of n is not non-
increasing. The final block works the same as the n = 2i − 2j case. Subtracting 1 from
n gives the binary representation (and first hyperbinary representation) of n− 1, and the final
block will have form 1 . . . 101 . . . 1. Each of the leading 1’s here gives us a new hyperbinary
representation using the 10 → 02 operation. Similarly, for each of the previous blocks this
operation gives a hyperbinary representation for each 1. This gives a total of s2(n) such repre-
sentations so far, and we are left to show that there must be at least one more. We know that
n = 2i − 2j if and only if n− 1 contains at most one 0 in its binary representation. Therefore
if n 6= 2i−2j then n−1 contains more than one 0. We have two possible cases for the location
of the 0’s:

Case 1 : We have two 0’s in a row. Using our operations we have 100 → 020 → 012. This
gives an extra hyperbinary representation containing 12, apart from the s2(n) described above.
Case 2: We have two 10 pairs. Using the operation 10 → 02, 10 . . . 10 can become 10 . . . 02
or 02 . . . 10 or we can use the operation twice to obtain 02 . . . 02. This also gives an extra
hyperbinary representation, apart from the s2(n) we already have. (Combinatorially we can
see that there are many ways of applying this to our blocks, as well as the additional operation
20→ 12 operation where applicable, so for large n, s2(n) + 1 is a small lower bound for a(n).)
We now have a(n) > s2(n), completing the proof.

We have shown that if n = 2i − 2j then a(n) = s2(n), and if n 6= 2i − 2j then a(n) > s2(n).
Because these are the only two options for n, combining these statements gives us the proof
of (1), namely, a(n) ≥ s2(n). Now, taking the contrapositive of the second statement proven
above, we get that if a(n) ≤ s2(n), then n = 2i − 2j . But a(n) < s2(n) is not possible by (1)
and so we are left with the statement if a(n) = s2(n) then n = 2i − 2j . Combining this with
the first statement proved above we get the proof of (2), namely, a(n) = s2(n) if and only if
n = 2i − 2j . Statements (1) and (2) hold for n ≥ 0, but of course n = 0 is the trivial case
a(n) = s2(n) = 0. �

2. Proof of (3)

Recall the third statement in the problem:

(3) Let r be a nonnegative integer. Prove that

max
2r≤n<2r+1

(a(n)− s2(n)) = Fr+2 −
⌊
r + 3

2

⌋
,

where Fr is the rth Fibonacci number.

Proof. The expression Fr+2 −
⌊
r+3
2

⌋
for r ≥ 2 gives OEIS sequence A129696, namely 1, 2, 5,

9, 17, 29, 50, 83, 138, . . . . (Here the expression is shifted to Fr+3 − 2−
⌊
r
2

⌋
for r ≥ 1.)

Let Li(r) be the ith largest value of the Stern sequence a(n) occurring in the interval
2r ≤ n < 2r+1. We know from [2] that L1(r) = Fr+2, for r ≥ 0, and this maximum occurs in
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two locations:

nr =
4 · 2r − (−1)r

3
, n∗r =

5 · 2r + (−1)r

3
.

The first set of indices are the Jacobsthal numbers, OEIS sequence A001045: 1, 3, 5, 11, 21,
43, 85 . . . ; the second, OEIS sequence A048573: 2, 3, 7, 13, 27, 53, 107, . . . (although n = 2
does not belong in the first interval for r = 0, so we will disregard this term). Note also, that
OEIS sequence A086893: 1, 3, 5, 13, 21, 53, 85, . . . gives the index of the term Fr+2 in the
ordered pair (Fr+2, Fr+1) which occurs in each interval 2r ≤ n < 2r+1, for r ≥ 0 (although the
first interval includes only n = 1). This Fr+2 alternates between locations nr and n∗r .

Let us now consider s2(n) for those n with a(n) = L1(r). We will first break down the above
three sequences into subsequences of alternating terms. The Jacobsthal sequence, A001045,
splits into 1, 5, 21, 85, 341, . . . (A002450) and 3, 11, 43, 171, . . . (A007583). According to the
entries, the binary representation of the former sequence has form (10)k1 for k ≥ 0, and so
s2(A002450(k)) = k + 1. Similarly, the binary representation of the latter sequence has form
(10)k11, for k ≥ 0, and so s2(A007583(k)) = k + 2. Combining these results, we get that
s2(A001045(r)) = 1, 2, 2, 3, 3, 4, 4, . . . =

⌊
r+3
2

⌋
for r ≥ 0.

If we next split the sequence A086893 into subsequences we get A002450 and 3, 13, 53, 213,
. . . (A072197). According to the entry, the binary representation of the latter sequence has
form 11(01)k, for k ≥ 0, and so s2(A072197(k)) = k+ 2. Combining these results, we get that
s2(A086893(r)) = 1, 2, 2, 3, 3, 4, 4, . . . =

⌊
r+3
2

⌋
for r ≥ 0.

Lastly, if we next split the sequence A048573 into subsequences we get A072197 and 7, 27,
107, 427, . . . (A136412). The binary representation of the latter sequence has form 1(10)k11,

for k ≥ 0, and so s2(A072197(k)) = k + 3. (Aside: A007583(k) = 22k+3+1
3 and binary form

(10)k11. Adding 22k+2 gives A136412(k) = 5·4k+1+1
3 . Therefore this sequence has the binary

form 1(10)k11.) Combining these results, we get that s2(A048573(r)) = 2, 3, 3, 4, 4, . . . =
⌊
r+5
2

⌋
for k ≥ 0.

We have just shown that for values of n with a(n) = L1(n), i.e., in sequences A001045 and
A086893 (nr and n∗r), a(n)− s2(n) = Fr+2−

⌊
r+3
2

⌋
. We now must show these are the maximal

values of a(n) − s2(n) on the intervals 2r ≤ n < 2r+1. For values of n in sequence A048573,
we have maximal a(n) but (a(n)− s2(n)) = Fr+2 −

⌊
r+5
2

⌋
is not maximal.

The first part of the following table gives the observed maximum value of (a(n)− s2(n)) for
intervals 2r ≤ n < 2r+1 with r ≤ 10, and the corresponding values of n. Comparing columns
we can confirm that max(a(n)− s2(n)) = Fr+2 −

⌊
r+3
2

⌋
for these intervals.

r max(a(n)− s2(n)) n L1(r)
⌊
r+3
2

⌋
Fr+2 −

⌊
r+3
2

⌋
L2(r) Fr+2 Fr−3

0 0 1 1 1 0 - 1 -
1 0 3 2 2 0 1 2 -
2 1 5 3 2 1 2 3 -
3 2 11/13 5 3 2 4 5 -
4 5 21 8 3 5 7 8 1
5 9 43/53 13 4 9 12 13 1
6 17 85 21 4 17 19 21 2
7 29 171/213 34 5 29 31 34 3
8 50 341 55 5 50 50 55 5
9 83 683/853 89 6 83 81 89 8

10 138 1365 144 6 138 131 144 13
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What about r > 10? If we start by assuming a(n) = L1(n), we have shown above that
a(n)− s2(n) = Fr+2 −

⌊
r+3
2

⌋
. To prove maximality in general we need to consider the second

largest value of the Stern sequence in each interval, namely L2(r). We know from [1] that for
r ≥ 4 we have that L2(r) = Fr+2 − Fr−3. Since Fr−3 >

⌊
r+3
2

⌋
for r ≥ 9, we have that

Fr+2 −
⌊
r + 3

2

⌋
> Fr+2 − Fr−3 = L2(r).

This means that max(a(n)− s2(n)) cannot occur for a(n) = L2(r) (or any other smaller value
of the Stern sequence). We must have a(n) = L1(r) and so max(a(n)− s2(n)) = Fr+2−

⌊
r+3
2

⌋
on 2r ≤ n < 2r+1 for r ≥ 9. Combined with the observed maximality for r ≤ 8, we are
done. �
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6. Notes for Problem 12

It appears that y(x) is given in two pieces: y(x) = x2/4 for 0 ≤ x ≤ 4 and y(x) = 2x− 4 for
x > 4, and that similarly defined functions have similarly simple formulas. Is there a simple
proof?
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