
STATISTICS OF DOMINO TILINGS ON A RECTANGULAR BOARD

THOTSAPORN “AEK” THANATIPANONDA

Abstract. It is well-known that the Fibonacci sequence, Fn, is the number of ways to cover
a 2-by-(n− 1) board using only horizontal (H) or vertical (V ) 2-by-1 dominoes. The number
of ways to tile a rectangular m-by-n board by these dominoes was given in 1961 by Kasteleyn
through the evaluation of a determinant. In this paper, we apply an automated method for
the mixed moments E[V aHb] for fixed non-negative integers a, b on a general m-by-n board.
These moments will give information about the distribution of “V -H statistics”. This is an
implementation of the work of Zeilberger.

1. Statistics on an 2-by-n board

In order to demonstrate the method, we first fix the board to be of size 2-by-n. Let Vn be
a random variable of the number of vertical dominoes on the tiling of a board of this size.

Let b be a tiling of the 2-by-n board, Bn. We consider the power sum, S[V r] :=
∑

b∈Bn
V (b)r.

The number of possible tilings on the 2-by-n board is S[V 0] = fn, where fn is the (n+ 1)-th
Fibonacci number. The straight moment is E[V r] = S[V r]/S[V 0] = S[V r]/fn.

Ultimately, we are interested in the moment about the mean, E[(V − µ)r], and the scaled-
moments,

E[(V − µ)r]

E[(V − µ)2]r/2
,

which can be used to show the normality distribution of V . We will do all this by gathering
data, making conjectures, and then proving them using induction.

Maple package:

All of these methods are efficiently implemented by the program, Domino.txt, which is avail-
able as a free download at http://www.thotsaporn.com/Domino.txt.

1.1. Fast Calculations and Conjectures. The generating function of a random variable V
is defined by

Fn(v) :=
∑
b∈Bn

vV (b).

For example, on the board of size 2-by-3, F3(v) = v3 + 2v. It is a basic fact from probability
that S[V 0] = Fn(1). S[V r] is obtained by applying the operator (v d

dv )r to Fn(v), and then
substituting v = 1.

Next, we define the grand generating function H(v, t) by

H(v, t) =

∞∑
n=0

Fn(v)tn.

In this problem,

H(v, t) =
1

1− vt− t2
, (1.1)
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which can be derived from the simple recurrence

H(v, t) = 1 + vtH(v, t) + t2H(v, t).

Now, (1.1) allows us to calculate values of S[V r] (and hence E[V r]) very fast. Recall that

∞∑
n=0

S[V 0]tn = H(1, t) =
1

1− t− t2
.

In general,
∞∑
n=0

S[V r]tn = (v
d

dv
)rH(v, t)|v=1.

Applying the quotient rule from single-variable calculus, we find that

∞∑
n=0

S[V r]tn =

[
(v
d

dv
)r

1

1− vt− t2

]
v=1

=
Pr(t)

(1− t− t2)r+1
,

where Pr(t) is a polynomial in t of degree at most 2r. In fact, S[V r] satisfies the recurrence of
the form (N2 −N − 1)r+1 and can be written as

S[V r] = A(n)fn +B(n)fn−1,

where A(n) and B(n) are polynomials in n of degree at most r. This enables us to use a
computer program to conjecture the formulas by trying to fit the polynomial to the data.

Define the golden ratio, φ := 1+
√
5

2 . Then we have the following formulas:

fn = S[V 0] =
1√
5

(
1 +
√

5

2

)n+1

− 1√
5

(
1−
√

5

2

)n+1

,

µn := E[V ] =
1

fn

[
n

5
fn +

2

5
(n+ 1)fn−1

]
≈ n

5
+

2

5φ
(n+ 1),

E[V 2] =
1

fn

[
n(5n+ 12)

25
fn +

4(n+ 1)

25
fn−1

]
≈ n(5n+ 12)

25
+

4(n+ 1)

25φ
,

E[V 3] =
1

fn

[
n(n2 + 12n+ 16)

25
fn +

2(n+ 1)(n2 + 2n− 4)

25
fn−1

]
≈ n(n2 + 12n+ 16)

25
+

2(n+ 1)(n2 + 2n− 4)

25φ
,

. . .

These computations were done entirely by a computer program written in Maple. To get the
same result, try ConjMoV(3,n); .

From these calculations, we can make a general conjecture of E[V r] (using a polynomial
ansatz, i.e., polynomial in n with polynomial coefficients in r) starting from the leading terms
(and after simplifying φ):
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Conjecture 1.

E[V r] ≈ nr

5r/2

(
1 +

r(2r +
√

5− 3)√
5n

+
r(r − 1)(6r2 − 32r + 6

√
5r + 37− 9

√
5)

15n2

+
2
√

5r(r − 1)(r − 2)(2r3 + 3
√

5r2 − 23r2 − 16
√

5r + 77r + 16
√

5− 73)

75n3

+ r(r − 1)(r − 2)(r − 3)

× 6r4 − 120r3 + 12
√

5r3 − 138
√

5r2 + 800r2 − 2100r + 432
√

5r − 393
√

5 + 1849

225n4

+ . . .

)
.

This conjecture was also made by a computer program. For example, try BigConjMoV(5,n,r);

to get the fifth largest term of the formula.
We use the conjectures of straight moments to calculate the moments about the mean via

E[(V − µ)r] =
r∑
i=0

(−1)i
(
r

i

)
µiE[V r−i].

E[(V − µ)0] = 1,

E[(V − µ)1] = 0,

E[(V − µ)2] = E[X2]− E[X]2 =
4
√

5n+ 4
√

5− 8

25
,

E[(V − µ)3] = E[X3]− 3E[X2]E[X] + 2E[X]3 =
8
√

5n

125
+

8
√

5

125
− 48

125
,

E[(V − µ)4] =
48n2

125
+

96n

125
− 272

√
5n

625
+

16

25
− 272

√
5

625
,

E[(V − µ)5] =
64n2

125
+

128n

125
− 736

√
5n

625
+

9856

3125
− 736

√
5

625
,

. . .

For more of these conjectures try, for example, ConjMoMeanV(7,n);.
This data leads us to conjecture general formulas of moments about the mean, which we

will prove formally in the next section.

Conjecture 2.

E[(V − µ)2r] =

(
2

5
√

5

)r (2r)!nr

r!
+ smaller terms,

E[(V − µ)2r+1] =
2

15

(
2

5
√

5

)r (2r + 1)!nr

(r − 1)!
+ smaller terms.

1.2. The Moments and Asymptotic Distribution. Conjectures are nice, but we still need
to prove them. The proof is elementary in the sense that we set up some recurrences and then
apply induction on them. In the end, we use these results to conclude the asymptotic normality
distribution of V .
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The generating function Fn(v) satisfies the recurrence

Fn(v) = vFn−1(v) + Fn−2(v), n ≥ 2,

where

F0(v) = 1, F1(v) = v.

The centralized probability generating function of Fn(v) is

Gn(v) :=
∑
i

p(i)vi−µ =
1

fnvµ
Fn(v).

The recurrence of Fn(v) translates to

Gn(v) = v
fn−1Gn−1(v)

fnvµn−µn−1
+
fn−2Gn−2(v)

fnvµn−µn−2
, n ≥ 2, (1.2)

where

G0(v) = 1, G1(v) = 1.

We will use this recurrence to set up some relations for the proof. But before diving into the
proof, we need to discuss some necessary probability background.

Definition 1.1 (Exponential moment generating function).

φ(t) := E[etX ] =


∑
x
etxp(x) if x is discrete,∫∞
−∞ e

txf(x)dx if x is continuous.

For the discrete case:

mn := E[Xn] =
∑
x

xnp(x) = φn(0).

We then have that

φ(t) = E[etX ] =
∑
x

∑
n

tnxn

n!
p(x) =

∑
n

tn

n!

∑
x

xnp(x) =
∑
n

tn

n!
mn.

For the standard normal distribution,

φ(t) = e
t2

2 =
∑
r

t2r

r!2r

implies that

m2r =
(2r)!

r!2r
and m2r+1 = 0.

Now we can return to the main theorem.

Theorem 1.2. Let

Er(n) =
E[(V − µ)r]

r!
.

Then

E2r(n) =

(
2

5
√

5

)r nr
r!

+ smaller terms,

E2r+1(n) =
2

15

(
2

5
√

5

)r nr

(r − 1)!
+ smaller terms.
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Proof. We see that

Gn(et) =
∑
i

p(i)et(i−µ) = φ(t),

with random variable X = i− µ. Now define the Maclaurin series of Gn(et) by

Gn(et) =
∑
r

Er(n)tr.

By properties of probability generating functions mentioned earlier,

Er(n) =
E[(V − µ)r]

r!
.

The recurrence (1.2) becomes

Gn(et) = et
fn−1Gn−1(e

t)

fnet(µn−µn−1)
+
fn−2Gn−2(e

t)

fnet(µn−µn−2)
, n ≥ 2. (1.3)

The series expansion of relation (1.3) leads to

Gn(et) =
fn−1
fn

( ∞∑
r=0

(1− µn + µn−1)
rtr

r!

)
·

( ∞∑
r=0

Er(n− 1)tr

)

+
fn−2
fn

( ∞∑
r=0

(−µn + µn−2)
rtr

r!

)
·

( ∞∑
r=0

Er(n− 2)tr

)
.

By comparing coefficients of tr, we obtain the relation

Er(n)− fn−1
fn

Er(n− 1)− fn−2
fn

Er(n− 2)

=
fn−1
fn

anEr−1(n− 1) +
fn−2
fn

bnEr−1(n− 2)

+
fn−1
fn

a2n
2!
Er−2(n− 1) +

fn−2
fn

b2n
2!
Er−2(n− 2)

+
fn−1
fn

a3n
3!
Er−3(n− 1) +

fn−2
fn

b3n
3!
Er−3(n− 2) + . . .

where an = 1− µn + µn−1 ≈ 1− 1√
5

and bn = −µn + µn−2 ≈ − 2√
5
. We remark that

bn
an
≈ 1 +

√
5

2
.

With this new relation, we can prove the theorem by simply applying an induction on r. The
base cases when r = 0 and r = 1 are obtained from the relation above, along with the values
of E0(n), E1(n) when n = 1, 2, 3 (for example). The induction step can be shown as follows.

Case 1 (even): Left hand side:

E2r(n)− fn−1
fn

E2r(n− 1)− fn−2
fn

E2r(n− 2)

=

(
fn−1
fn

+ 2
fn−2
fn

)(
2

5
√

5

)r nr−1

(r − 1)!
+ smaller terms.
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Right hand side:

fn−1
fn

anE2r−1(n− 1) +
fn−2
fn

bnE2r−1(n− 2)+

fn−1
fn

a2n
2
E2r−2(n− 1) +

fn−2
fn

b2n
2
E2r−2(n− 2) + smaller terms

=

(
fn−1
fn

a2n
2

+
fn−2
fn

b2n
2

)(
2

5
√

5

)r−1 nr−1

(r − 1)!
+ smaller terms.

The fact that
fn−1
fn

an +
fn−2
fn

bn = 0, for all n

and
2

5
√

5

(
fn−1
fn

+ 2
fn−2
fn

)
=
fn−1
fn

a2n
2

+
fn−2
fn

b2n
2
, for all n

make both sides equal.

Case 2 (odd): Left hand side:

E2r+1(n)− fn−1
fn

E2r+1(n− 1)− fn−2
fn

E2r+1(n− 2)

=

(
fn−1
fn

+ 2
fn−2
fn

)
2

15

(
2

5
√

5

)r rnr−1

(r − 1)!
+ smaller terms.

Right hand side:

fn−1
fn

anE2r(n− 1) +
fn−2
fn

bnE2r(n− 2)+

fn−1
fn

a2n
2
E2r−1(n− 1) +

fn−2
fn

b2n
2
E2r−1(n− 2)+

fn−1
fn

a3n
6
E2r−2(n− 1) +

fn−2
fn

b3n
6
E2r−2(n− 2) + smaller terms

= −
(
fn−1
fn

an + 2
fn−2
fn

bn

)(
2

5
√

5

)r nr−1

(r − 1)!

+

(
fn−1
fn

a2n
2

+
fn−2
fn

b2n
2

)
2

15

(
2

5
√

5

)r−1 nr−1

(r − 2)!

+

(
fn−1
fn

a3n
6

+
fn−2
fn

b3n
6

)(
2

5
√

5

)r−1 nr−1

(r − 1)!
+ smaller terms.

After some calculations, the computer program verifies that they are equal. �

Next, we show the asymptotic normality of V which follows directly from Theorem 1.2.

Corollary 1.3. The distribution of numbers of V on a tiling of a 2-by-n board is asymptotically
normal.

Proof. To show the normality of V , we show that

V − µ
σV

∼ N(0, 1) as n→∞.
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We verify, as n→∞,

m2r =
(2r)!

2rr!
and m2r+1 = 0,

for every r:

lim
n→∞

m2r = lim
n→∞

E[(V − µ)2r]

E[(V − µ)2]r
= lim

n→∞

(
2

5
√

5

)r nr
r!

(2r)!(
4n
5
√
5

)r =
(2r)!

2rr!
,

and

lim
n→∞

m2r+1 = lim
n→∞

E[(V − µ)2r+1]

E[(V − µ)2](r+1/2)
= lim

n→∞

2

15

(
2

5
√

5

)r nr

(r − 1)!
(2r + 1)!(

4n
5
√
5

)r+1/2
= 0.

�

Remark. The conjectures of the straight moments E[V r] can be shown by the same method
but with fewer calculations.

2. Statistics on an m-by-n board

Let’s turn our attention to the more general statistics E[V aHb] on a more general m-by-n
board when m is fixed and n is symbolic. The guess-and-check method still works here. We
will briefly discuss it. We first consider the number of possible ways to put dominoes on the
board. For this purpose, we define

S(a,b)(m,n) :=
∑
B

V aHb.

The data of S(0,0) from the program are

m : n 1 2 3 4 5 6 7 8 9 10 11
1 0 1 0 1 0 1 0 1 0 1 0
2 1 2 3 5 8 13 21 34 55 89 144
3 0 3 0 11 0 41 0 153 0 571 0
4 1 5 11 36 95 281 781 2245 6336 18061 51205
5 0 8 0 95 0 1183 0 14824 0 185921 0
6 1 13 41 281 1183 6728 31529 167089 817991 4213133 21001799

The recurrence relations of each row are as follows:

m = 2 : S(2, n) = S(2, n− 1) + S(2, n− 2), (Fibonacci).

m = 3 : S(3, n) = 4S(3, n− 2)− S(3, n− 4),

m = 4 : S(4, n) = S(4, n− 1) + 5S(4, n− 2) + S(4, n− 3)− S(4, n− 4).

All of these relations (and more) are not difficult to show. The recurrence will satisfy a linear
system with constant coefficients which comes from solving a system of recurrence equations.
Hence, all we need to do is to verify the recurrence up to some numeric values.
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2.1. The Grand Generating Function of an m-by-n Board with a Fixed m. We make
a generalization of the grand generating function from a 2-by-n board size to an m-by-n one.

m = 2 : H(v, h, t) =
1

1− vt− h2t2
,

m = 3 : H(v, h, t) =
1− h3t2

1− 2h(h2 + v2)t2 + h6t4
,

m = 4 : H(v, h, t) =
1− h4t2

1− v2t− h2(3v2 + 2h2)t2 − h4v2t3 + h8t4
,

. . .

For a fixed number m, the recurrences of S(a,b)(m,n) also follow from this grand generating
function. For example:

S(a,b)(2, n) where a+ b = t, t ≥ 0 satisfies the recurrence equation

(N2 −N − 1)t+1 = 0.

S(a,b)(3, n) where a+ b = t, t ≥ 0 satisfies the recurrence equation

(N4 − 4N2 + 1)t+1 = 0.

S(a,b)(4, n) where a+ b = t, t ≥ 0 tisfies the recurrence equation

(N4 −N3 − 5N2 −N + 1)t+1 = 0.

. . .

The calculation of higher moments to show normality are more difficult (although it could
be done). However, it is known that the sequence of random variables Xn, whose grand
generating function is rational in v, h and t, is asymptotically normal; see [4].

In conclusion, the results and method presented here contain many interesting features,
which we outline below.

(1) This is an automated method to generate conjectures and a semi-automated method
to prove them. The method is totally elementary and involves only basic knowledge
of probability.

(2) This is a classical implementation of symbolic computation, which not only shows the
normality of the distribution but also gives more terms of the moments of interest.

(3) It supplies many new tiling identities which could be of interest to the bijectors out
there.

APPENDICES

Appendix A. About the program

The process of gathering the data, making conjectures and proving them by induction have
been implemented in the program Domino.txt. We enumerate the main commands below.
Please refer to the author’s web site for complete details of the program.

MoV(r, n)

Input: the r-th moment the length of the board n.

Output: the r-th moment of V on 2-by-n board.

Try: seq(MoV(1, n), n = 1..10);
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ConjMoV(r, n)

Input: non-negative integer r, symbolic n.

Output: the conjectured formula of the r-th moment of V in term of n.

Try: ConjMoV(2, n);

BigConjMoV(k, n, r)

Input: non-negative integer k, symbolic n and r.

Output: the k-th biggest term of Moment V-formula as variables in n and r.

Try: BigConjMoV(2, n, r);

GenVm(m,n, v)

Input: numeric m,n and symbolic v.

Output: generating function of v (vertical tile) from the board of size m-by-n computed
from empirical data.

Try: seq(GenVm(4, n, v), n = 1..10);
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