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Abstract. Zeckendorf’s theorem states that every positive integer can be written uniquely
as the sum of nonconsecutive shifted Fibonacci numbers {Fn}, where we take F1 = 1 and
F2 = 2. This has been generalized for any Positive Linear Recurrence Sequence (PLRS),
which informally is a sequence satisfying a homogeneous linear recurrence with a positive
leading coefficient and nonnegative integer coefficients. These decompositions are generaliza-
tions of base B decompositions. In this and the followup paper, we provide two approaches
to investigate linear recurrences with leading coefficient zero, followed by nonnegative integer
coefficients, with differences between indices relatively prime (abbreviated ZLRR). The first
approach involves generalizing the definition of a legal decomposition for a PLRS found in
Koloğlu, Kopp, Miller, and Wang. We prove that every positive integer N has a legal de-
composition for any ZLRR using the greedy algorithm. We also show that a specific family
of ZLRRs loses uniqueness of decompositions. The second approach converts a ZLRR to a
PLRR that has the same growth rate. We develop the Zeroing Algorithm, a powerful helper
tool for analyzing the behavior of linear recurrence sequences. We use it to prove a general
result that guarantees the possibility of conversion between certain recurrences, and develop
a method to quickly determine whether certain sequences diverge to +∞ or −∞, given any
real initial values. This paper investigates the first approach.

1. Introduction and Definitions

1.1. History and Past Results. The Fibonacci numbers are one of the most well-known
and well-studied mathematical objects, and have captured the attention of mathematicians
since their conception. This paper focuses on a generalization of Zeckendorf’s theorem, one of
the many interesting properties of the Fibonacci numbers. Zeckendorf [18] proved that every
positive integer can be written uniquely as the sum of nonconsecutive Fibonacci numbers
(called the Zeckendorf Decomposition), where the (shifted) Fibonacci numbers1 are F1 = 1,
F2 = 2, F3 = 3, F4 = 5, . . . . This result has been generalized to other types of recurrence
sequences. We set some notation before describing these generalizations.

Definition 1.1 ([11], Definition 1.1, (1)). We say a recurrence relation is a Positive Linear
Recurrence Relation (PLRR) if there are nonnegative integers L, c1, . . . , cL such that

Hn+1 = c1Hn + · · ·+ cLHn+1−L, (1.1)

with L, c1, and cL positive.

Definition 1.2 ([11], Definition 1.1, (2)). We say a sequence {Hn}∞n=1 of positive integers
arising from a PLRR is a Positive Linear Recurrence Sequence (PLRS) if H1 = 1, and
for 1 ≤ n < L we have

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1. (1.2)

This work was supported by NSF Grants DMS1561945 and DMS1659037, as well as the Finnerty Fund. We
thank the participants of the 2019 Williams SMALL REU and the referee for constructive comments.

1If we use the standard initial conditions, 1 appears twice and uniqueness is lost.
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We call a decomposition N =
∑m

i=1 aiHm+1−i of a positive integer, and its associated sequence
{ai}mi=1, legal if a1 > 0, the other ai ≥ 0, and one of the following holds.

• Condition 1: We have m < L and ai = ci for 1 ≤ i ≤ m,
• Condition 2: There exists s ∈ {1, . . . , L} such that

a1 = c1, a2 = c2, . . . , as−1 = cs−1, as < cs,

as+1, . . . , as+` = 0 for some ` ≥ 0, and {as+`+i}m−s−`i=1 is legal.

Additionally, we let the empty decomposition be legal for N = 0.

Remark. Informally, a legal decomposition is one where we cannot use the recurrence relation
to replace a linear combination of summands with another summand, and the coefficient of each
summand is appropriately bounded; other authors [7, 17] use the phrase G-ary decomposition
for a legal decomposition. For example, if Hn+1 = 3Hn + 2Hn−1 + 4Hn−2, then H5 + 3H4 +
2H3+3H2 is legal, whereas H5+3H4+2H3+4H2 is not because we can replace 3H4+2H3+4H2

with H5; similarly 6H5 + 2H4 is not legal because the coefficient of H5 is too large.

We now state an important generalization of Zeckendorf’s theorem, then describe what
recurrences and sequences we are studying, followed by our results. See [1, 2, 3, 4, 5, 6, 9,
14, 16, 10, 12] for more on generalized Zeckendorf decompositions, and [8, 16] for a proof of
Theorem 1.3.

Theorem 1.3 (Generalized Zeckendorf’s theorem for a PLRS). Let {Hn}∞n=1 be a PLRS.
Then,

(1) there is a unique legal decomposition for each nonnegative integer N ≥ 0, and
(2) there is a bijection between the set Sn of integers in [Hn, Hn+1) and the set Dn of legal

decompositions
∑n

i=1 aiHn+1−i.

Although this result is powerful and generalizes Zeckendorf’s theorem to a large class of
recurrence sequences, it is restrictive in that the leading term must have a positive coefficient.
We examine what happens in general to existence and uniqueness of legal decompositions if
c1 = 0. Some generalizations were studied in [4, 5] on sequences called the (s, b)-Generacci
sequences. In-depth analysis was done on the (1, 2)-Generacci sequence, later called the Ken-
tucky sequence, and the Fibonacci Quilt sequence; the first has uniqueness of decomposition
while the second does not.

Definition 1.4. We say a recurrence relation is an s-deep Zero Linear Recurrence Rela-
tion (ZLRR) if the following properties hold.

(1) Recurrence relation: There are nonnegative integers s, L, c1, . . . , cL such that

Gn+1 = c1Gn + · · ·+ csGn+1−s + cs+1Gn−s + · · ·+ cLGn+1−L, (1.3)

with c1, . . . , cs = 0 and L, cs+1, cL positive.
(2) No degenerate sequences: Let S = {m | cm 6= 0} be the set of indices of positive

coefficients. Then, gcd(S) = 1.

Remark. We impose the second restriction to eliminate recurrences with undesirable prop-
erties, such as Gn+1 = Gn−1 + Gn−3, where the odd- and even-indexed terms do not interact.
Any sequence satisfying this recurrence splits into two separate, independent subsequences.
Also note that 0-deep ZLRRs are just PLRRs, whose sequences and decomposition properties
are well-understood.
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Definition 1.5. We say a sequence {Gn}∞n=1 of positive integers arising from an s-deep
ZLRR is an s-deep Zero Linear Recurrence Sequence (ZLRS) if G1 = 1, G2 = 2, . . . ,
Gs+1 = s + 1 and for s + 2 ≤ n ≤ L,

Gn =

{
n, cs+1 ≤ s;

cs+1Gn−s−1 + cs+2Gn−s−2 + · · ·+ cn−1G1 + 1, cs+1 > s.
(1.4)

We call a decomposition N =
∑m

i=1 aiHm+1−i of a positive integer and its associated se-
quence {ai}mi=1 legal, if ai ≥ 0, and one of the following conditions hold.

• Condition 1: We have a1 = 1 and ai = 0 for 2 ≤ i ≤ m.
• Condition 2: We have s < m < L and ai = ci for 1 ≤ i ≤ m.
• Condition 3: There exists t ∈ {s + 1, . . . , L} such that

a1 = c1, a2 = c2, . . . , at−1 = ct−1, at < ct,

at+1, . . . , at+` = 0 for some ` ≥ 0, and {as+`+i}m−t−`i=1 is legal.

Additionally, we let the empty decomposition be legal for N = 0.

The idea behind Condition 1 is if N appears in the sequence, say N = Gn, then we allow
this to be a legal decomposition. This is necessary for there to be a legal decomposition for
N = 1 for any s-deep ZLRS.

Remark. We note one special case for the initial conditions. If Zn+1 = Zn−1 + Zn−2 (a
recurrence relation we call the “Lagonaccis” as it has a similar recurrence relation to the
Fibonaccis, but the terms “lag” behind and grow slowly), then Z1 = 1, Z2 = 2, Z3 = 4,
Z4 = 3, Z5 = 6, and so on.2

Similar to the initial conditions of a PLRS, we construct the initial conditions in such a way
to guarantee existence of legal decompositions. The main idea behind the definition of legal
decompositions is if N does not appear in the sequence (i.e., N 6= Gn for any n ∈ N0), then
for some m ∈ N0, Gm ≤ N < Gm+1,

3 and we cannot use Gm, Gm−1, . . . , Gm−s+1 in the
decomposition of N . Let us illustrate this with an example.

Example 1.6. Consider again the Lagonacci sequence Zn+1 = Zn−1 + Zn−2, with the first
terms

1, 2, 4, 3, 6, 7, 9, 13, 16, . . . ,

and let us decompose N = 10. Because Z7 = 9 ≤ 10 < 13 = Z8, we cannot use Z7 = 9 in its
decomposition. So, we use the next largest number, Z6 = 7, and get 10 = 7+3 = Z6+Z4. This
is a legal 1-deep ZLRS decomposition. However, notice that we can also have 10 = 6 + 4 =
Z5 + Z3.

The above example suggests the following questions. Is uniqueness of decomposition lost
for all ZLRSs? If so, is it lost for finitely many numbers? For infinitely many numbers? For
all numbers from some point onward?

2We use Zn because the Lagonacci’s are easy to study, with interesting properties, usually requiring special
attention. For an example of more standard behavior, consider Yn+1 = 2Yn−1 + 2Yn−2, with Y1 = 1, Y2 = 2,
Y3 = 3, Y4 = 6, . . . .

3Note that if 4 ≤ N < 3, then N is not an integer, so we reach no contradiction with the special initial
condition case.
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We offer two approaches to addressing these questions. This paper focuses on generalizing
Zeckendorf’s theorem to s-deep ZLRSs, while [13] converts s-deep ZLRRs to PLRRs with the
Zeroing Algorithm.

1.2. Main Results. This paper presents the first approach that is summarized immediately
below in Theorems 1.7 and 1.8 with Conjectures 1.9 and 1.10. The proofs of the theorems are
presented in Section 2. Section 3 concludes the paper with open questions for future research.

Theorem 1.7 (Generalized Zeckendorf’s theorem for s-deep ZLRSs). Let {Gn}∞n=1 be an
s-deep ZLRS. Then, there exists a legal decomposition for each nonnegative integer N ≥ 0.

Theorem 1.8 (Loss of Uniqueness of Decomposition for a family of s-deep ZLRSs). Let
{Gn}∞n=1 be an s-deep ZLRS such that cs+1 > s, cs+2 > 0, and cL > 1. Then, uniqueness of
decomposition is lost for at least one positive integer N .

We also have some conjectures relating to uniqueness of decompositions for s-deep ZLRSs,
based on empirical evidence.

Conjecture 1.9. Let {Gn}∞n=1 be an s-deep ZLRS such that cs+1 > s. Then, uniqueness of
decomposition is lost for at least one positive integer N .

Conjecture 1.10. Let {Gn}∞n=1 be an s-deep ZLRS with recurrence relation

Gn+1 = Gn−2 + cGn−3,

with c ≥ 4. Then, there exists a unique decomposition for each positive integer N .

The proof for Theorem 1.7 is a mostly straightforward strong induction proof. The difficulty
arises with the initial conditions, which are split into two cases. Theorem 1.8 is proved by
finding an integer with at least two decompositions for this family of s-deep ZLRSs.

2. ZLRS-Legal Decompositions

We prove Theorems 1.7 and 1.8 in Sections 2.1 and 2.2, respectively.

2.1. Existence. Given an s-deep ZLRS, we use a strong inductive argument to show that a
greedy-type algorithm always terminates in a legal decomposition. However, we need to make
sure the decomposition is legal. Therefore, at each step, we use the largest coefficient possible,
depending on the coefficients of the given s-deep ZLRS, and making sure we do not have more
terms than are legal. We first illustrate this with an example.

Example 2.1. Consider the 1-deep ZLRS Gn+1 = 2Gn−1 + 2Gn−2, which has initial condi-
tions G1 = 1, G2 = 2, G3 = 3. The first few terms of this sequence are

G4 = 6, G5 = 10, G6 = 18, G7 = 32, G8 = 56, G9 = 100, G10 = 176.

Let us decompose N = 164 using the greedy algorithm. Because G9 = 100 < 164 < 176 = G10,
and s = 1, we must use G8 = 56 in the decomposition. Because c1 = c2 = 2, we can use
G8 a maximum of two times, and G7 a maximum of one time, which gives us a total of
m = 2G8 + G7 = 2 ∗ 56 + 32 = 144.

We must now decompose N −m = 164− 144 = 20 with the remaining terms, G1, . . . , G6.
Because G6 = 18 < 20 < 32 = G7, we can repeat the same process as before, and “add” the
decomposition of 20, which is 20 = 2 ∗ 10 = 2G5, into the decomposition of 164. We get

164 = 2 ∗ 56 + 32 + 2 ∗ 10 = 2G8 + G7 + 2G5.
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Notice that G7 cannot be legally used in the decomposition of 20, because the legal decomposition
requirements only allow G7 to be used at most once. It is therefore absolutely necessary for
20 < G7.

Proof of Theorem 1.7. By Definition 1.4, the s-deep ZLRS has the form of (1.3). We first
prove that the greedy algorithm terminates in a legal decomposition for all integers N up to
and including the last initial condition. For a base case for the induction argument, we must
consider the following three cases. Note that Case 3 only applies to a specific sequence. For
the base cases, we use the maximum number of Gts possible consistent with legality.

Case 1. If cs+1 ≤ s, then the initial conditions are the first L integers. So, by Condition 1,
we trivially have a legal decomposition for all of the initial conditions.

Case 2. If cs+1 > s, then the initial conditions are specially constructed so that we guarantee
existence of legal decompositions. We do so by adding the smallest integer that cannot be
legally decomposed by the previous terms. We illustrate this with an example.

Example 2.2. Let us take 1-deep ZLRSs of the form Gn+1 = c1Gn−1 +c2Gn−2, where c1 > 1
and c2 > 0. The initial conditions start with G1 = 1 and G2 = 2. Assuming G3 > G2, we
know all N with G2 < N < G3 cannot use G2 = 2 in their decomposition, so we can only use
G1 = 1. We also have a restriction of only being able to use G1 = 1 at most c1 times. So,
the first number we cannot legally decompose is c1 + 1; thus, G3 = c1 + 1, which comes by
construction as well. By a similar argument, G4 = 2c1 + c2 + 1.

Case 3 (Special). If the ZLRS is the Lagonaccis, then we must consider the first four terms
in the sequence instead of the first three terms. However, because all four integers appear in
the sequence (Z1 = 1, Z2 = 2, Z3 = 4, and Z4 = 3), we still get a trivial legal decomposition
for the first four positive integers.

For the inductive step of the proof, we assume that all integers up to and including N − 1
have a legal decomposition. We must show that N must also have a legal decomposition. Let
Gt ≤ N < Gt+1. Two cases must be considered.

Case 1. Suppose N = Gt. Then, trivially, we have a legal decomposition.

Case 2. Suppose N > Gt and let m ≤ N be the largest integer decomposed using a
legal decomposition involving only summands drawn from Gt, Gt−1, . . . , Gt−L. Suppose
m = a1Gt−s−1 with a1 < cs+1. To complete the proof, we need to show that N −m can be
expressed with the remaining terms. If you recall Example 2.1, it was important that 20 < G7

so that we could decompose it with the remaining terms. Generalizing from that example, we
need N − m < Gt−s−1. Suppose that does not hold, so instead we have N − m ≥ Gt−s−1.
However, this implies that we have not used the maximum number of Gt−s−1s in the greedy
decomposition, which is a contradiction. So, we now have that N − m < Gt−s−1. By the
strong inductive hypothesis, there exists a legal decomposition of N −m. We then add m to
this legal decomposition to obtain the decomposition of N . Because the decomposition for
N − m is legal, adding m keeps the decomposition legal, by Condition 3 of Definition 1.5.
Thus, we have a legal decomposition for N .

Let ci be the next nonzero constant in the recurrence relation. We then let m =
cs+1Gt−s−1 +aiGt−s−i with ai < cs+i. We want to show that N−m can be expressed with the
remaining terms. To do so, we need N −m < Gt−s−i. Suppose not. Then, N −m ≥ Gt−s−i.
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However, this implies that we have not used the maximum number of Gt−s−is in our greedy
decomposition, which is a contradiction. So, we have that N − m < Gt−s−i. By the same
reasoning as the previous case, we have a legal decomposition for N .

We continue this argument, taking the next nonzero constant and adding that on to m,
until we reach this final case.

Let m = c1Gt + c2Gt−1 + · · · + cL−1Gt+2−L + (cL − 1)Gt+1−L. This is the largest
possible value m can attain with an allowable legal decomposition. We want to show that
N −m < Gt−L+1. Noting N < Gt+1, we see that

N −m = N − (c1Gt + · · ·+ cL−1Gt+2−L + (cL − 1)Gt+1−L)

< Gt+1 − (c1Gt + · · ·+ cL−1Gt+2−L + (cL − 1)Gt+1−L)

= (c1Gt + · · ·+ cL−1Gt+2−L + cLGt+1−L)

− (c1Gt + · · ·+ cL−1Gt+2−L + (cL − 1)Gt+1−L)

= Gt+1−L. (2.1)

Thus, N − m < Gt+1−L, and in every case we attain a legal decomposition for N ,
as desired. Therefore, by strong induction, we attain a legal decomposition for any positive
integer N given a fixed s-deep ZLRS. �

2.2. Loss of Uniqueness.

Proof of Theorem 1.8. We need to show there exists an N such that

N = cs+1GL+2 + cs+2GL+1 + · · ·+ cL−1Gs+4 + Gs+3 + x,

satisfies GL+s+2 < N < GL+s+3, and Gs+3 + x < min{2Gs+3, Gs+4}. Note that the second
condition implies Gs+3 < Gs+3 + x < Gs+4. If such an N exists, it would have two legal
decompositions. Namely, cs+1GL+2+cs+2GL+1+· · ·+cL−1Gs+4+Gs+3+(x) and cs+1GL+2+
cs+2GL+1+ · · ·+cL−1Gs+4+(Gs+3+x), where (n) represents the legal decomposition of n. It
suffices to show that such an N exists. To complete the proof, we need the following lemma,
whose proof is given after the proof of Theorem 1.8.

Lemma 2.3. Let {Gn}∞n=1 be an s-deep ZLRS with recurrence relation

c1Gn + · · ·+ csGn+1−s + cs+1Gn−s + · · ·+ cLGn+1−L,

such that cs+1 > s, cs+2 > 0, and cL > 1. Then,

Gs+L+2 − cs+1GL+2 − cs+2GL+1 − · · · − cL−1Gs+4 −Gs+3 < 0.

We can now continue with the proof. We first show there exists an x > 0 such that

GL+s+2 − cs+1GL+2 − cs+2GL+1 − · · · − cL−1Gs+4 −Gs+3 < x < min{Gs+3, Gs+4 −Gs+3}.
However, by Lemma 2.3, we see that

GL+s+2 − cs+1GL+2 − cs+2GL+1 − · · · − cL−1Gs+4 −Gs+3 ≤ 0.

So, we require 0 < x < min{Gs+3, Gs+4 −Gs+3}. Because min{Gs+3, Gs+4 −Gs+3} > 1, such
an x exists.

Because cL > 1, the condition Gs+3 + x < min{2Gs+3, Gs+4} < 2Gs+3 implies

N = cs+1GL+2 + cs+2GL+1 + · · ·+ cL−1Gs+4 + Gs+3 + x

< cs+1GL+2 + cs+2GL+1 + · · ·+ cL−1Gs+4 + 2Gs+3

≤ cs+1GL+2 + cs+2GL+1 + · · ·+ cL−1Gs+4 + cLGs+3

= GL+s+3,
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implying such an N exists. Thus, uniqueness of decompositions is not guaranteed for this
family of s-deep ZLRSs. �

We conclude this section with a proof of Lemma 2.3.

Proof of Lemma 2.3. There are three cases to consider.

Case 1. Suppose L = s + 2. We need to show

G2s+4 − cs+1Gs+4 −Gs+3 < 0.

Using the recursive definition on G2s+4, we obtain

G2s+4 − cs+1Gs+4 −Gs+3 = cs+1Gs+3 + cs+2Gs+2 − cs+1Gs+4 −Gs+3.

Again, using the recursive definition of (1.3) and simplifying, we obtain

cs+1Gs+3 + cs+2Gs+2 − cs+1Gs+4 −Gs+3 = (2−G3)c
2
s+1 − 2cs+1,

which is indeed negative, as G3 > 2 for any s-deep ZLRS with cs+1 > s.

Case 2. Suppose L = s + 3. We need to show

G2s+5 − cs+1Gs+5 − cs+2Gs+4 −Gs+3 < 0.

This case follows similar to Case 1, using the recursive definitions of the terms and simplifying,
yielding

(3−H4)c
2
s+1 − 2cs+1cs+2 − c2s+2 − 2cs+1 − 1 + (1− cs+2)cs+3,

which is negative because cs+2 > 0 and cs+1 > s, implying H4 ≥ 4.

Case 3. Suppose L = s + m with m ≥ 4. We need to show

G2s+m+2 − cs+1Gs+m+2 − cs+2Gs+m+1 − · · · − cs+m−1Gs+4 −Gs+3 < 0. (2.2)

Using the recursive definition satisfied by the terms, we find (2.2) is equivalent to

cs+1Gs+m+1 + cs+2Gs+m + · · ·+ cs+m−1Gs+3 + cs+mGs+2

− cs+1Gs+m+2 − cs+2Gs+m+1 − cs+3Gs+m − · · · − cs+m−1Gs+4 −Gs+3

= cs+1

(
m∑
i=1

cs+iGm+1−i

)
+ cs+2

(
1 +

m−1∑
i=1

cs+iGm−i

)
+ · · ·+ cs+m−x+2

(
1 +

x−1∑
i=1

cs+iGx−i

)

+ · · ·+ cs+m−1

(
1 +

2∑
i=1

cs+iG3−i

)
+ cs+m

(
1 +

1∑
i=1

cs+iG2−i

)
− cs+1

(
m∑
i=1

cs+iGm+2−i

)

− cs+2

(
m∑
i=1

cs+iGm+1−i

)
− cs+3

(
1 +

m−1∑
i=1

cs+iGm−i

)
− · · · − cs+m−y+3

(
1 +

y−1∑
i=1

cs+iGy−i

)

− · · · − cs+m−1

(
1 +

3∑
i=1

cs+iG4−i

)
−

(
1 +

2∑
i=1

cs+iG3−i

)
,

where 2 ≤ x ≤ m and 4 ≤ y ≤ m. To show (2.2) is negative, we consider the coefficients of
the terms separately in subcases and prove each are nonpositive.

Subcase 1. Let us consider the coefficients of cs+ics+j for 1 ≤ i, j < m. Assuming, with-
out loss of generality, that i ≤ j, we see that for all m − i + 2 ≤ j < m, the coefficient
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of cs+ics+j is nonpositive. If j < m − i + 2, then we see that the coefficient of cs+ics+j is
Gm+2−i−j − Gm+3−i−j . A simple inductive argument shows that, for cs+1 ≥ s, Gn+1 ≥ Gn,
implying Gm+2−i−j −Gm+3−i−j < 0.

Subcase 2. We now consider the case when each cs+i, 1 ≤ i < m, is not multiplied by other
coefficients. For i = 1, simple examination shows there is no positive part to this coefficient,
so it is nonpositive. When i = 2, the positive part is 1, but the negative part is G2 = 2 > 1,
so this coefficient is negative. For 3 ≤ i < m, both the positive and negative part are 1, so the
coefficient is zero. Thus, all coefficients of cs+i are nonpositive for this range of i.

Subcase 3. We finally consider the case where the coefficient of cs+m is nonpositive. We see
that this coefficient is

2G1cs+1 −G2cs+1 −G1cs+2 + 1 = 1− cs+2,

which is nonpositive as cs+2 > 0. �

3. Conclusion and Future Work

We have introduced a method to analyze decompositions arising from ZLRSs, raising many
fruitful natural questions for future work.

• Are Conjectures 1.9 and 1.10 true?

• What is required for an s-deep ZLRS to have unique decompositions? If Conjecture
1.9 is true, we minimally need cs+1 ≤ s. However there are families, such as the Lag-
onaccis, with nonunique decompositions and cs+1 ≤ s. What else is needed?

• Can a stronger result regarding loss of uniqueness be obtained? At the moment,
we have constructed some counterexamples. Do the number of decompositions grow
exponentially in comparison to the terms of sequence?
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