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PROBLEMS PROPOSED IN THIS ISSUE

H-809 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
Prove that

(
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H-810 Proposed by Ángel Plaza, Gran Canaria, Spain.
Prove that

∞
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1

L4
n − 25

=
5
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6
√
5
.

H-811 Proposed by Ángel Plaza, Gran Canaria, Spain.
For any positive integer k let {Fk,n}n≥0 be defined by Fk,n+2 = kFk,n+1 + Fk,n for n ≥ 0

with Fk,0 = 0, Fk,1 = 1. Prove that
∞
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1
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√
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.

H-812 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
Prove that
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SOLUTIONS

A Series Related to the Sum of the Reciprocals of the Fibonacci Numbers

H-775 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 53, No. 3, August 2015)

Let c be any real number c 6= 2, −L2n for n ≥ 0. Let

γc =
√
5

∞
∏

n=1

(

1 +
c

L2n

)−1

.

Prove that
∞
∑

k=1

1

(L2 + c)(L4 + c) · · · (L2k + c)
=

γc + c− 3

c2 − c− 2
.

Solution by the proposer.

Let Pn = (L2 + c)(L22 + c) · · · (L2n + c). For n ≥ 1, we show that

(c2 − c− 2)
n
∑

k=1

1

Pk
=

L2n+1 − c

Pn
+ c− 3. (1)

The proof of (1) is by mathematical induction on n. For n = 1, we have

LHS =
c2 − c− 2

P1

=
c2 − c− 2

3 + c
=

7− c

3 + c
+ c− 3 =

L4 − c

P1

+ c− 3 = RHS.

We assume that (1) holds for n. For n+ 1, we have

(c2 − c− 2)

n+1
∑

k=1

1

Pk
= (c2 − c− 2)

(

1

Pn+1

+

n
∑

k=1

1

Pk

)

=
c2 − c− 2

Pn+1

+
L2n+1 − c

Pn
+ c− 3

=
c2 − c− 2 + (L2n+1 − c)(L2n+1 + c)

Pn+1

+ c− 3

=
L2

2n+1 − 2− c

Pn+1

+ c− 3

=
L2n+2 − c

Pn+1

+ c− 3,

since L2
m − 2(−1)m = L2m. Thus, (1) holds for n+ 1. Therefore (1) is proved. We have

Pn =

n
∏

k=1

(L2k + c) =

n
∏

k=1

L2k

n
∏

k=1

(

1 +
c

L2k

)

.

Hence, using FmLm = F2m, we have

F2L2L4L8 · · ·L2n = F4L4L8 · · ·L2n = · · · = F2nL2n = F2n+1 .

Thus,

Pn = F2n+1

n
∏

k=1

(

1 +
c

L2k

)

. (2)
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Therefore, by (1) and (2), we have

n
∑

k=1

1

Pk
=

1

c2 − c− 2

[

L2n+1 − c

F2n+1

n
∏

k=1

(

1 +
c

L2k

)−1

+ c− 3

]

→ γc + c− 3

c2 − c− 2

as n → ∞ since Lm/Fm →
√
5 as m → ∞.

Note: If c = 0, we then have

∞
∑

k=1

1

L2L4 · · ·L2k

=
γ0 − 3

−2
i.e.,

∞
∑

k=1

1

F2k+1

=
3−

√
5

2
.

From the above identity, we obtain the well-known identity

∞
∑

k=0

1

F2k

=
7−

√
5

2
.

Also solved by Dmitry Fleischman.

A Series of Inverse Tangents of Reciprocals of Lucas Numbers

H-776 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 53, No. 3, August 2015)

Determine

(i)
∞
∑

n=0

(−1)n tan−1 1

L3n
and (ii)

∞
∑

n=1

tan−1 1

F2n
tan−1 1

L2n
.

Solution by the proposer.

(i) For n ≥ 0, we have

tan−1 1

α3n
+ tan−1 1

α3n+1
= tan−1

(

1

α3n + 1

α3n+1

1− 1

α3n · 1

α3n+1
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= tan−1

(
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α4·3n − 1

)
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(

α2·3n
(
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)

α2·3n (α3n + α−3n) (α3n − α−3n)

)

= tan−1

(

1

α3n + β3n

)

= tan−1 1

L3n
.

Using the above identity, we have

m
∑

n=0

(−1)n tan−1 1

L3n
=

m
∑

n=0

[

(−1)n tan−1 1

α3n
− (−1)n+1 tan−1 1

α3n+1

]

= tan−1 1

α
− (−1)m+1 tan−1 1

α3m+1
→ tan−1 1

α
as m → ∞.
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(ii) We have

tan−1 1

α2n−1
+ tan−1 1

α2n+1
= tan−1

(

1

α2n−1 + 1

α2n+1

1− 1

α2n−1 · 1

α2n+1

)

= tan−1

(

α+ α−1
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)

= tan−1

√
5

α2n − β2n
= tan−1 1

F2n
,

and similarly

tan−1 1

α2n−1
− tan−1 1

α2n+1
= tan−1

(

1
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1 + 1
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)

= tan−1

(

α− α−1
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)

= tan−1 1
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= tan−1 1
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.

Using the above identities, we have

m
∑
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tan−1 1

F2n
tan−1 1

L2n
=

m
∑

n=1

[

(

tan−1 1

α2n−1

)2

−
(

tan−1 1

α2n+1

)2
]

=

(
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α

)2

−
(

tan−1 1
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)2

→
(
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α

)2

as m → ∞.

Also solved by Kenneth B. Davenport, Dmitry Fleischman, and David Terr.

Sums of Products of Binomial Coefficients

H-777 Proposed by Kiyoshi Kawazu, Izumi Kubo, and Toshio Nakata, Japan.
(Vol. 53, No. 4, November 2015)

For any nonnegative integers n, m, l prove that

n
∑

k=0

(

n

k

)2
∑

i≥0

(

2k

i

)(

2n − 2k

m− i

)

(−1)m−i =

{(

2l
l

)(

2n−2l
n−l

)

if m = 2l;

0 if m = 2l + 1.

Solution by the proposers.

For any nonnegative integer n and formal power series f(x) =
∑∞

k=0
akx

k, let [xn]f(x)
denote an. Let a(n,m) be the left-hand side of the identity to be proved. Then we have

a(n,m) = [zm]
n
∑

k=0

(

n

k

)2

(1 + z)2k(1− z)2n−2k,

since we obtain

(1 + z)2k(1− z)2n−2k =
∑

m,i

(

2k

i

)(

2n− 2k

m− i

)

(−1)m−izm for n ≥ k ≥ 0
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using the binomial theorem. We have

a(n,m) = [zmtn]{(1 + z)2t2 + 2(1 + z2)t+ (1− z)2}n,
since

[tn]{(1 + z)2t+ (1− z)2}n(1 + t)n =

n
∑

k=0

(

n

k

)(

n

n− k

)

(1 + z)2k(1− z)2n−2k.

Using the trinomial theorem,

a(n,m) = [zmtn]
∑

k0+k1+k2=n

(

n

k0, k1, k2

)

(1 − z)2k0(2 + 2z2)k1(1 + z)2k2tk1+2k2 ,

where the sum runs over all nonnegative integers k0, k1, k2 satisfying k0 + k1 + k2 = n. Em-
phasizing the coefficient of tn, we have

a(n,m) = [zm]
∑

k

(

n

k, n − 2k, k

)

2n−2k(1 + z2)n−k(1− z2)2k.

Since all terms among the sum are polynomials in z2, we have that a(n,m) = 0 if m = 2l + 1
for some integer l ≥ 0. So, suppose that m = 2l. Letting y = z2, we have

a(n, 2l) = [yl]
∑

k

(

n

k, n− 2k, k

)

2n−2k(1 + y)n−2k(1− y)2k

= [yl]
∑

k

(

n

2k

)(

2k

k

)

2n−2k(1 + y)n−2k(1− y)2k

= [xnyl]
∑

k

∑

n

(

n

2k

)

{2x(1 + y)}n
(

2k

k

)

2−2k(1 + y)−2k(1− y)2k

= [xnyl]
∑

k

{2x(1 + y)}2k
(1− 2x(1 + y))2k+1

(

2k

k

)

2−2k(1 + y)−2k(1− y)2k

= [xnyl]
1

1− 2x(1 + y)

∑

k

(

2k

k

)(

x(1− y)

1− 2x(1 + y)

)2k

= [xnyl]
1

1− 2x(1 + y)

(

1− 4

(

x(1− y)

1− 2x(1 + y)

)2
)−1/2

= [xnyl]{(1− 4x)(1 − 4xy)}−1/2.

The second equality and the fourth equality hold by
(

n

k, n− 2k, k

)

=

(

n

2k

)(

2k

k

)

and
∑

n

(

n

k

)

zn =
zk

(1− z)k+1
,

respectively. Since

(1− 4x)−1/2 =

∞
∑

k=0

(−1/2

k

)

(−4x)k =

∞
∑

k=0

(

2k

k

)

xk,

we have

(1− 4x)−1/2(1− 4xy)−1/2 =

∞
∑

k=0

∞
∑

l=0

(

2k

k

)(

2l

l

)

xk+lyl.
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Hence,

a(n, 2l) = [xnyl]{(1− 4x)(1 − 4xy)}−1/2 =

(

2l

l

)(

2n− 2l

n− l

)

.

Also solved by Dmitry Fleischman.

A Series with Reciprocals of Products of Fibonacci Numbers

H-778 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 53, No. 4, November 2015)

Prove that
∞
∑

n=1

1

(−
√
5)nF2F4F8 · · ·F2n

=

√
5− 3

2
.

Solution by the proposer.

Let F ′
n =

√
5Fn. For n ≥ 2, we have

(−1)n

α2nF ′
2
F ′
4
· · ·F ′

2n−1

− (−1)n+1

α2n+1
F ′
2
F ′
4
· · ·F ′

2n

=
(−1)n(α2nF ′

2n + 1)

α2n+1
F ′
2
F ′
4
· · ·F ′

2n

=
(−1)n(α2n(α2n − β2n) + 1

α2n+1F ′
2
F ′
4
· · ·F ′

2n

=
(−1)nα2n+1

α2n+1F ′
2
F ′
4
· · ·F ′

2n

=
(−1)n

F ′
2
F ′
4
· · ·F ′

2n

.

Using the above identity, we have
m
∑

n=1

1

(−
√
5)nF2F4F8 · · ·F2n

=
m
∑

n=1

(−1)n

F ′
2
F ′
4
F ′
8
· · ·F ′

2n

=
−1

F ′
2

+

m
∑

n=2

(

(−1)n

α2nF ′
2
F ′
4
· · ·F ′

2n−1

− (−1)n+1

α2n+1F ′
2
F ′
4
· · ·F ′

2n

)

=
−1

F ′
2

+
1

α4F ′
2

− (−1)m+1

α2m+1F ′
2
F ′
4
· · ·F ′

2m

→
√
5− 3

2

as m → ∞.

Also solved by Kenneth B. Davenport and Dmitry Fleischman.

Late acknowledgement. Both Kenneth B. Davenport and J. M. Jarvie (solution submit-
ted via Kenneth B. Davenport) solved H-767.
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