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PROBLEMS PROPOSED IN THIS ISSUE

H-787 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that
∞∑

n=1

1

α2Fn+1F2FnF2Fn+2

=
7− 3

√
5

2
.

H-788 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Given c > 0 determine

lim
n→∞

√
√
√
√
√

cF 2
2 +

√
√
√
√

cF 2
4 +

√

cF 2
8 +

√

· · · +
√

cF 2
2n .

H-789 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

For any real numbers x, y we denote B(x, y) =
√

x2+xy+y2

3 . Prove that for n ≥ 1, we have

(i)

(
Ln+2 − 3

n

)2

≤ 1

n

∑

n cyclic

B2(L) ≤ LnLn+1 − 2

n
;

(ii)

(
Fn+2 − 1

n

)2

≤ 1

n

∑

n cyclic

B2(F ) ≤ FnFn+1

n
,

where for a sequence X := {Xm}m≥1 we use
∑

n cyclic

B2(X) = B2(X1,X2) +B2(X2,X3) + · · ·+B2(Xn−1,Xn) +B2(Xn,X1).
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H-790 Proposed by Ovidiu Furdui, Cluj-Napoca, Romania.

Calculate
∞∑

n=2

(

Hn − γ − ζ(2)

2
− ζ(3)

3
− · · · − ζ(n)

n

)

,

where ζ denotes the Riemann zeta function and Hn = 1 +
1

2
+ · · ·+ 1

n
is the nth harmonic

number.

H-791 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

For an integer n ≥ 0 find a closed form expression for the sum
n∑

k=0

(−1)2
k

F3k+1(L3kL3k+1 · · ·L3n)2
.

SOLUTIONS

The Number of Solutions of a Family of Boolean Equations

H-756 Proposed by Russell J. Hendel, Towson University.
(Vol. 52, No. 3, August 2014)

We seek to generalize a known problem that states that

#{〈x1, . . . , xn+1〉 : x1x2 ∨ x2x3 ∨ · · · ∨ xnxn+1 = 0} = Fn+3 (1)

where xi are Boolean variables for i = 1, . . . , n. To generalize the above formula, we

(i) fix integers d, i with d > i ≥ 1;
(ii) let Dj be products of d Boolean variables xk with consecutive indices such that Dj

and Dj+1 have i variables in common;
(iii) let m be the total number of variables occurring in D1, . . . ,Dn and
(iv) let

Sn = #{〈x1, . . . , xm〉 : D1 ∨D2 ∨ · · · ∨Dn = 0}.
Determine the coefficients of the minimal recursion satisfied by the {Sn}n≥1.

Solution by the proposer.

Let us start with some examples.

Examples: To illustrate the notation we use (1):

d = 2, i = 1,Dj = xjxj+1 and Sn = Fn+3.

The (minimal) recursion satisfied by the {Sn}n≥1 is Sn+2 = Sn+1 + Sn.
For certain special cases of d and i, it is easy to discover the minimal recursions satisfied by

{Sn}n≥1. Some illustrative examples are as follows:

Sn =
(

2d−1 − 1
)

Sn−1 + 2d−2Sn−2, for i = 1 and arbitrary d.

Sn =
(
2i − 1

)
Sn−1 +

(
2i − 1

)
Sn−2, for d = 2i and arbitrary i.

Sn =

d∑

j=1

Sn−j, for i = d− 1 and arbitrary d.
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Now we are ready to proceed to the solution. With notations as presented in the proposed
problem, we have the following theorem.

Theorem 1. (i) Define k by d = 2i+ k. If k ≥ 0, then

Sn =
(

2i+k − 1
)

Sn−1 +
(

2i+k − 2k
)

Sn−2. (2)

(ii) Define g, p, k by g = d− i and d = pg + k, 1 ≤ k ≤ g. If p ≥ 1,

Sn =

p
∑

u=1

(2g − 1)Sn−u +
(

2g − 2g−k
)

Sn−p−1. (3)

Since, the proofs of (2) and (3) are similar, it suffices to present the proof of (3). Prior to
presenting the proof, we present some simple examples illustrating our notations.

Example 2. In (3), let d = 5, i = 3. Then g = 2, p = 2 and k = 1.
The equation D1 ∨D2 ∨ · · · ∨Dn = 0 becomes

x1x2x3x4x5 ∨ x3x4x5x6x7 ∨ · · · ∨ x2(n−1)+1 · · · x2(n−1)+5 = 0.

Equation (3) asserts that the solutions satisfy the recursion Sn = 3Sn−1 + 3Sn−2 + 2Sn−3 for

all n ≥ 4.

Further numerical examples may be found in Table 1.

Table 1. The table presents numerical examples illustrating the main theo-
rem. The top row lists the degree d while the left-most column lists i. For
example row i = 1 and column d = 2 corresponds to the family of Boolean
equations x1x2 ∨ x2x3 ∨ · · · ∨xnxn+1 = 0 where all disjuncts have degree d = 2
and every two consecutive disjuncts have i = 1 variables in common. Row i = 1
and column d = 2 contain the coefficients of the minimal recursion satisfied by
the {Sn}n≥1, that is, Sn = Sn−1 + Sn−2.

d = 2 3 4 5 6 7 8

i = 1 〈1, 1〉 〈3, 2〉 〈7, 4〉 〈15, 8〉 〈31, 16〉 〈63, 32〉 〈127, 64〉

2 〈1, 1, 1〉 〈3, 3〉 〈7, 6〉 〈15, 12〉 〈31, 24〉 〈63, 48〉

3 〈1, 1, 1, 1〉 〈3, 3, 2〉 〈7, 7〉 〈15, 14〉 〈31, 28〉

4 〈1, 1, 1, 1, 1〉 〈3, 3, 3〉 〈7, 7, 4〉 〈15, 15〉

5 〈1, 1, 1, 1, 1, 1〉 〈3, 3, 3, 2〉 〈7, 7, 6〉

To prove (3), it will be convenient to only treat the case k < g as the proof for the case
k = g is similar and omitted. Using this assumption it is easy to verify that

p =

⌊

d

g

⌋

, k =

〈

d

g

〉

, (4)

where bxc is the greatest integer not exceeding x and 〈d/g〉 is the remainder of the division of
d by g.
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In the proof, we will use word terminology from semigroups. More specifically, we will speak
about the prefix, factor or suffix of an elementary conjunction; for example, if discussing the
elementary conjunction x2x3x4x5, x2 is a prefix, x5 is a suffix, and x3x4 is a factor. We will
also interchange word and vector notation: e.g. we will say 〈x3, x4〉 is a factor of x2x3x4x5.
We use boldface 1 to indicate the vector of all 1’s, so that e.g. 〈xj+1, . . . , xj+g〉 6= 1 means
that not all g variables xj+1, . . . , xj+g are identically 1.

Figure 1, which facilitates the presentation of the proof, compactly summarizes the rela-
tionship between the indices of the Boolean variables and the disjuncts Dj .

The proof uses an induction argument. The two propositions below correspond to the base
case and induction step.

Proposition 3.

#{〈x1, . . . , xm〉 :
n
∨
j=1

Dj = 0, with 〈xm−g+1, . . . , xm〉 6= 1} = (2g − 1)Sn−1.

Proof. The requirement that
n
∨
j=1

Dj = 0, implies Dn = 0, which in turn requires that some

variable occurring in Dn has value 0. There are (2g − 1) ways for 〈xm−g+1, . . . , xm〉 6= 1. By
definition of the Sn, there are Sn−1 ways for the remaining m− g variables to be solutions to
n−1
∨
j=1

Dj = 0. �

length g suffix of D
n−(b d

g
c+1)

︷ ︸︸ ︷
xm−(b d

g
c+2)g+1 · · · xm−(b d

g
c+1)g

︸ ︷︷ ︸

last g literals of D
n−(b d

g
c+1)

length (g − 〈d
g
〉) factor of D

n−b d
g
c

︷ ︸︸ ︷
xm−(b d

g
c+1)g+1 · · · xm−(b d

g
c+1)g+(g−〈d

g
〉)

︸ ︷︷ ︸

(g − 〈d
g
〉) consecutive literals of D

n−b d
g
c

length 〈d
g
〉 prefix of Dn

︷ ︸︸ ︷
xm−b d

g
cg−〈d

g
〉+1 · · · xm−b d

g
cg

︸ ︷︷ ︸

length 〈d
g
〉 factor of Dn−q , 0 ≤ q ≤ b d

g
c

· · ·
Suffix of Dn−q

︷ ︸︸ ︷
xm−(q+1)g+1 · · · xm−qg
︸ ︷︷ ︸

length g factor of Dn

Suffix of Dn−(q−1)
︷ ︸︸ ︷
xm−qg+1 · · · xm−(q−1)g
︸ ︷︷ ︸

g consecutive literals in Dn

· · ·
Suffix of Dn

︷ ︸︸ ︷
xm−g+1 · · · xm
︸ ︷︷ ︸

last g literals in Dn

Figure 1. Illustration of the relation of the variables xk to the Dj in (3).

Proposition 4. Suppose that for some integer q ≥ 1, we have

#{〈x1, . . . , xm〉 : nj=1 ∨Dj = 0, with 〈xm−qg+1, . . . , xm−(q−1)g〉 6= 1 and

xm−u have arbitrary values for 0 ≤ u ≤ (q − 1)g − 1} =

q
∑

u=1

(2g − 1)Sn−u. (5)

If additionally,

(q + 1)g < d, (6)

then (5) holds with q replaced by q + 1.

Proof. Replacing q with q + 1 in the left-hand side of (5) necessitates assuming

〈xm−(q+1)g+1, . . . , xm−qg〉 6= 1, (7)
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and

xm−u have arbitrary values for 0 ≤ u ≤ qg − 1. (8)

By (6), xm−(q+1)g+1 · · · xm−qg is a factor of Dn and hence (7) implies that Dn = 0.
There are 2g−1 ways that (7) can take place. By the definition of the Sn, there are Sn−(q+1)

ways for the firstm−(q+1)g variables, x1, x2, . . . , xm−(q+1)g , to be solutions to
n−(q+1)

∨
j=1

Dj = 0.

Using an induction assumption, we conclude that the total number of solutions of
n
∨
j=1

Dj = 0

with (8) and (7) holding is

(2g − 1)Sn−(q+1) +

q
∑

u=1

(2g − 1)Sn−u =

q+1
∑

u=1

(2g − 1)Sn−u.

�

Corollary 5. Using the notation in (4), we have

#{〈x1, . . . , xm〉 :
n
∨
j=1

Dj = 0, with 〈xm−pg+1, . . . , xm−(p−1)g〉 6= 1 and

xm−u have arbitrary values 0 ≤ u ≤ (p− 1)g − 1} =

p
∑

u=1

(2g − 1)Sn−u. (9)

Proof. A routine induction argument with Proposition 3.1 as the base case and Proposition
3.2 as the induction step. �

Completion of the Proof of (3).

Proof. Assume

xm−u = 1, 0 ≤ u ≤
⌊

d

g

⌋

g − 1. (10)

Since we require Dn = 0, this assumption requires that at least one of the 〈dg 〉 variables,
xm−b d

g
cg−〈d

g
〉+1, . . . , xm−b d

g
cg equals 0; that is, (10) implies

〈xm−b d
g
cg−〈d

g
〉+1, . . . , xm−b d

g
cg〉 6= 1. (11)

There are 2
〈d
g
〉− 1 ways (11) can take place. Note that (11) also implies that Dn−q = 0, 1 ≤

q ≤ bdg c, because the word on the left side of (11) is also a factor of Dn−q, 1 ≤ q ≤ bdg c.
Consequently, we are indifferent to the values of the g − 〈dg 〉 variables

xm−(b d
g
c+1)g+1, . . . , xm−(b d

g
c+1)g+(g−b d

g
c).

There are 2g−〈d
g
〉 ways this can happen. By the definition of the Sn, there are Sn−(b d

g
+1c) ways

for the remaining m− (bdg c+ 1)g variables to be solutions to
n−(b d

g
c+1)

∨
j=1

Dj = 0.

Hence, by (4), there are a total (2
〈d
g
〉− 1)2

g−〈d
g
〉
Sn−(b d

g
+1c) = (2k − 1)2g−kSn−(p+1) solutions

to
n∨

j=1
Dj = 0 with (10) and (11) holding.

The proof of (3) is completed by combining this case with (9). �
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The Lucas Factorial of a Prime

H-757 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 52, No. 2, May 2014)

For an odd prime p prove that
p
∏

k=1

Lk ≡
{

2(−1)(p+1)/4 (mod Fp) if p ≡ −1 (mod 4),

(−1)(p−1)/4Fp−3 (mod Fp) if p ≡ 1 (mod 4).

Solution by the proposer.

Let

(
n

k

)

F

denote the Fibonomial coefficient. For 1 ≤ k ≤ p− 1, we have

gcd(Fk, Fp) = Fgcd(k,p) = F1 = 1. (1)

From Theorem 1 of [1], we have

n∏

k=1

L2k =

n∑

k=0

(
2n + 1

k

)

F

.

Letting p = 2n+ 1 in the above identity, by (1), we have

(p−1)/2
∏

k=1

L2k =

(p−1)/2
∑

k=0

(
p

k

)

F

= 1 +

(p−1)/2
∑

k=1

FpFp−1 · · ·Fp−k+1

FkFk−1 · · ·F1
≡ 1 (mod Fp). (2)

From Theorem 3 of [1], we have

n∏

k=1

L2k−1 =
2n∑

k=0

in−k

(
2n

k

)

F

, where i =
√
−1.

Letting p = 2n− 1 in the above identity, by (1), we have

(p+1)/2
∏

k=1

L2k−1 =

p+1
∑

k=0

i(p+1)/2−k

(
p+ 1

k

)

F

= i(p+1)/2 + i−(p+1)/2 + i(p−1)/2Fp+1 + i−(p−1)/2Fp+1

+

p−1
∑

k=2

i(p+1)/2−k × Fp+1Fp · · ·Fp−k+2

FkFk−1 · · ·F1

= (−1)(p+1)/4(1 + (−1)(p+1)/2) + (−1)(p−1)/4(1 + (−1)(p−1)/2)Fp−1 (mod Fp).

So from the above, we immediately conclude that if p ≡ −1 (mod 4), then

(p+1)/2
∏

k=1

L2k−1 ≡ 2(−1)(p+1)/4 (mod Fp), (3)

while if p ≡ 1 (mod 4), then

(p+1)/2
∏

k=1

L2k−1 ≡ (−1)(p−1)/42Fp−1 ≡ (−1)(p−1)/4(Fp + Fp−3) ≡ (−1)(p−1)/4Fp−3 (mod Fp).

(4)
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Since
p
∏

k=1

Lk =

(p−1)/2
∏

k=1

L2k

(p+1)/2
∏

k=1

L2k−1,

the desired congruence follows from (2), (3) and (4).
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Limits of Factorials and Tangents at Exponents Involving Fibonacci Numbers

H-758 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

Compute:

lim
n→∞

(

n
√
n!

Fm

(

n
√

(2n− 1)!!
Fm+1

(

tan

(
π(n + 1) n+1

√
n+ 1

4n n
√
n

)

− 1

)Fm+2
))

.

Solution by Ángel Plaza.

Since Fm+2 = Fm+1 + Fm+1 the proposed limit may be obtained by the product of the
following two limits:

lim
n→∞

(

n
√
n!

(

tan

(
π(n + 1) n+1

√
n+ 1

4n n
√
n

)

− 1

))Fm

, and

lim
n→∞

(

n
√

(2n − 1)!!

(

tan

(
π(n+ 1) n+1

√
n+ 1

4n n
√
n

)

− 1

))Fm+1

.

These limits are respectively equal to
( π

2e

)Fm

and
(π

e

)Fm+1

from where the result follows.

Let us show that

lim
n→∞

n
√
n!

(

tan

(
π(n + 1) n+1

√
n+ 1

4n n
√
n

)

− 1

)

=
π

2e
.

By Stirling’s formula lim
n→∞

n
√
n!

n
=

1

e
, and lim

x→1

tan
(
π
4x
)
− 1

x− 1
=

π

2
. Then

lim
n→∞

n
√
n!

(

tan

(
π(n+ 1) n+1

√
n+ 1

4n n
√
n

)

− 1

)

=
π

2e
lim
n→∞

n

(
(n+ 1) n+1

√
n+ 1

n n
√
n

− 1

)

=
π

2e
lim
n→∞

(
(n+ 1) n+1

√
n+ 1− n n

√
n
)

=
π

2e
lim
n→∞

(n + 1) n+1
√
n+ 1

n
(Stolz-Cezaro)

=
π

2e
.

The second limit may be obtained similarly taking into account that (2n − 1)!! =
(2n)!

2n n!
,

and by Stirling’s formula that lim
n→∞

n
√

(2n− 1)!!

n
=

2

e
.
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Also solved by Dmitry Fleischman, Hideyuki Ohtsuka, and the proposers.

Late Acknowledgement. Kenneth B. Davenport solved H-755.

Errata. In H-783 (iii), the right-hand side of the equality to be proved is
35− 15

√
5

18
instead

of
35− 15

√
3

18
.
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