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PROBLEMS PROPOSED IN THIS ISSUE

H-673 Proposed by H.-J. Seiffert, Berlin, Germany
The Pell and Pell-Lucas numbers are defined by

P0 = 0, P1 = 1, and Pn+1 = 2Pn + Pn−1 for n ≥ 1,

Q0 = 2, Q1 = 2, and Qn+1 = 2Qn + Qn−1 for n ≥ 1,

respectively. Prove that, for all positive integers n,

P2n−1 = 2−n

2n−1∑

k=0

(−1)b(2n−5k−5)/4c
(

4n− 1

k

)
,

Q2n = 21−n

2n∑

k=0

(−1)b(2n−5k)/4c
(

4n + 1

k

)
.

H-674 Proposed by José Luis Dı́az-Barrero, Barcelona, Spain and Pantelimon
George Popescu, Bucharest, Romania

Let n be a positive integer. Prove that

nπ2FnFn+1 ≤ (n(Fn − 1) + π(Fn+2 − 1))2.

H-675 Proposed by John J. Jaroma, Ave Maria, Florida
An odd perfect number is an odd integer that is equal to the sum of its proper divisors.

Although such a number is currently unknown, many conditions necessary for its existence
have been established. The earliest is attributed to Euler who showed that if n is an odd
perfect number then

n = pαp2β1

1 · · · p2βr
r ,

where p, p1, . . . , pr are distinct odd primes and p ≡ α ≡ 1 (mod 4). The prime p has been
dubbed the special prime. Show that the least prime divisor of n is not p.
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H-676 Proposed by Mohammad K. Azarian, Evansville, Indiana
Let f(x) = sinh x, g(x) = ln(x +

√
1 + x2), and h(x) = 1/(2 − f(−g(−x))). Also, let

h0(x) = h(x), h1(x) = h0(h0(x)), . . . , and hn+1(x) = h0(hn(x)) for all n ≥ 0. If p(x) =∏n
i=0 hi(x), then find the coefficient of F r

k (k > 0) in the expansion of 1/
√

p(Fk) in terms of
r and n.

SOLUTIONS

Inequalities With Weighted Power Sums

H-654 Proposed by Slavko Simic, Belgrade, Yugoslavia
(Vol. 45, No. 2, May 2007)

Let x = {xi}n
i=1 be a sequence of real numbers and p = {pi}n

i=1 be a sequence of positive

numbers with
∑n

i=1 pi = 1. Define Sk =
∑k

i=1 pix
k
i −

(∑k
i=1 pixi

)k

, for k = 1, 2, 3, . . .. Prove

that S2
3 ≤ 3

2
S2S4. Is it true that the inequality S2m

2m+1 ≤ (2m+1)m2m

(m+1)2m−1 S2S
2m−1
2m+2 holds for all

m ≥ 1?

Partial solution by the proposer

We give a simple proof of the first inequality. Namely, it is well-known that S4 ≥ 0 for
arbitrary x and p because the function x 7→ x4 is convex. Making a shift x 7−→ x + t with
an arbitrary real number t, we have

S4(t) :=
4∑

i=1

pi(xi + t)4 −
(

4∑
i=1

pi(xi + t)

)4

=
4∑

i=1

pi(xi + t)4 −
(

4∑
i=1

pixi + t

)4

.

Furthermore, S4(t) ≥ 0 for all real numbers t. Developing in powers of t, we get

S4(t) = S4 + 4S3t + 6S2t
2.

Putting t := −S3/3S2 and using the fact that S4(t) ≥ 0 for this value of t, we obtain the
assertion from the part 1.

No solution was received for the inequality suggested at part 2 although Paul S.
Bruckman showed, using Hölder’s inequality, that the stronger inequality

S2m
2m+1 ≤ S2S

2m−1
2m+2

holds for all m = 1, 2, . . . and for sequences x and p such that
∑n

i=1 pixi = 0.

More Inequalities With Weighted Power Sums

H-655 Proposed by Slavko Simic, Belgrade, Yugoslavia
(Vol. 45, No. 2, May 2007)

Let {ci}n
i=1 be a finite sequence of distinct positive integers and q > 1 be a natural

number. Prove that
⌊∑n

i=1 ciq
ci∑n

i=1 qci

⌋
= c, where c = max{ci : i = 1, . . . , n}. Is it true that⌊

(q−1)
∑n

i=1 ciq
ci∑n

i=1 qci

⌋
= c(q − 1)− 1?
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Partial solution by the proposer

We shall give a simple proof of the first part of the problem valid for all real q ≥ 2. Since
n > 1, we have ∑n

i=1 ciq
ci

∑n
i=1 qci

< max{ci : i = 1, . . . , n}
∑n

i=1 qci

∑n
i=1 qci

= c.

Also since
∞∑

n=1

n− 1

qn
=

1

(q − 1)2
,

we get that ∑
i:ci<c

c− ci − 1

qc−ci
<

1

(q − 1)2
;

i.e.,

(c− 1)
∑
i:ci<c

qci −
∑
i:ci<c

ciq
ci <

qc

(q − 1)2
.

Hence,

(c− 1)
∑
i:ci≤c

qci −
∑
i:ci≤c

ciq
ci <

qc

(q − 1)2
+ (c− 1)qc − cqc = qc

(
1

(q − 1)2
− 1

)
≤ 0.

Therefore,

c− 1 <

∑n
i=1 ciq

ci

∑n
i=1 qci

< c.

Observe that on the right hand side we need to exclude the case n = 1 for which the strict
inequality becomes equality. The conclusion of part 1 now follows.

No solution was received for the inequality proposed in part 2. The proposer
claims that it follows in an analogous way as the proof of part 1 but the argument
needs a closer examination.

Also solved partially by Paul S. Bruckman.

A Sequence Tending To e

H-656 Proposed by Andrew Cusumano, Great Neck, NY
(Vol. 45, No. 2, May 2007)

Let An =
∑n

k=1 kk. Show that limn→∞
(

An+2

An+1
− An+1

An

)
= e. Show that the same holds for

the sequence of general term An = (n + 1)n+1 − nn.

Solution by the editor based on a solution by G.-C. Greubel, Newport News,
VA

We start with the first part. Let Φn be given by

Φn :=
An+2

An+1

− An+1

An

.
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It is clear that An = nn + An−1. Now the ratio of An+2/An+1 is given by

An+2

An+1

=
(n + 2)(n+2) + An+1

An+1

=
(n + 2)(n+2)

(n + 1)(n+1) + An

+ 1

= (n + 2)

(
n + 2

n + 1

)n+1 (
1 +

An

(n + 1)(n+1)

)−1

+ 1

= (n + 2)

(
1 +

1

n + 1

)n+1 (
1 +

An

(n + 1)(n+1)

)−1

+ 1.

It is easy to see that An = nn(1 + o(1)) as n →∞. Thus,

An

(n + 1)n+1
=

nn(1 + o(1))

(n + 1)n+1
=

1 + o(1)

e(n + 1)
as n →∞.

With these estimates, Φn becomes

Φn = (n + 2)

(
1 +

1

n + 1

)n+1 (
1 +

1

e(n + 1)
+ o

(
1

n

))−1

−(n + 1)

(
1 +

1

n

)n (
1 +

1

en
+ o

(
1

n

))−1

as n →∞.

By taking the limit as n →∞ of both sides above we are lead to

lim
n→∞

Φn = lim
n→∞

{
(n + 2)

(
1 +

1

n + 1

)n+1 (
1 +

1

en
+ o

(
1

n

))−1

−(n + 1)

(
1 +

1

n

)n (
1 +

1

en
+ o

(
1

n

))−1
}

= lim
n→∞

{
(n + 2)n+2

(n + 1)n+1
− (n + 1)n+1

nn
+ o(1)

}

= e,

where the last limit above is due to Brothers and Knox [1]. This is the desired result for
part 1 of the problem.

We now deal with part 2. Write

Ψn :=
An+2

An+1

=
(n + 3)(n+3) − (n + 2)(n+2)

(n + 2)(n+2) − (n + 1)(n+1)

= (n + 3)

(
1 +

1

n + 1

)n+1
(
1 + 1

n+2

)n+2 − 1
n+3(

1 + 1
n+1

)n+1 − 1
n+2

.

Using the known asymptotic(
1 +

1

n

)n

= e− e

2n
+ o

(
1

n

)
as n →∞,

(see (4) in [1]), it follows easily that
(
1 + 1

n+2

)n+2 − 1
n+3(

1 + 1
n+1

)n+1 − 1
n+2

=
1− 1

2(n+2)
− 1

e(n+3)
+ o

(
1
n

)

1− 1
2(n+1)

− 1
e(n+2)

+ o
(

1
n

) = 1 + o

(
1

n

)
as n →∞.
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Thus, the limiting value of Ψn is

lim
n→∞

Ψn = lim
n→∞

{
(n + 3)

(
1 +

1

n + 1

)n+1 (
1 + o

(
1

n

))

− (n + 2)

(
1 +

1

n

)n (
1 + o

(
1

n

))}

= lim
n→∞

{(
(n + 2)n+2

(n + 1)n+1
− (n + 1)n+1

nn

)

+

((
1 +

1

n + 1

)n+1

−
(

1 +
1

n

)n
)

+ o(1)

}

= e,

where the above limit follows again from the result of [1]. This is the desired result for part
2 of the problem.

Also solved by Paul S. Bruckman.

[1] H. J. Brothers and J. A. Knox, New Closed-Form Approximations to the Logarithmic
Constant e, Math. Intell., 20 (1998), 25–29.

Fermat’s Last Theorem and the Golden Section

H-657 Proposed by Paul S. Bruckman, Sointula, Canada
(Vol. 45, No. 2, May 2007)

Show that the equation (a + bα)4 + (a + bβ)4 = c4 has no nonzero integer solutions a, b, c,
where α = (1 +

√
5)/2 and β = (1−√5)/2.

Solution by the proposer

By expansion, the given Diophantine equation can be put in the form

2a4 + 4a3b + 18a2b2 + 16ab3 + 7b4 = c4.

Since the equation is homogeneous, we may suppose that the gcd(a, b, c) = 1. Multiplying
the above equation by 3 and regrouping we get

5a4 + (a + 3b)4 = 3c4 + 60ab3 + 60b4.

Reducing the above equation modulo 4 we get

a4 + (a− b)4 + c4 ≡ 0 (mod 4).

We see that this is possible only if all three a, b and c are even, which is a contradiction.

Also solved by G. C. Greubel.
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The Cauchy-Schwarz Inequality and Fibonacci Numbers

H-658 Proposed by José Luis Dı́az-Barrero, Barcelona, Spain
(Vol. 45, No. 3, August 2007)

Let n be a positive integer. Prove that

F2n <
1

2

(2nFnFn+1

Fn+2 − 1
+

(
2n

n

)
Fn+2 − 1

2n

)
.

Solution by H.-J. Seiffert, Berlin, Germany

In view of the arithmetic-geometric inequality, it suffices to show that

F2n <

√(
2n

n

)
FnFn+1 for n > 1.

In (1) and (2) of [1], it is shown that

F2n =
n∑

k=0

(
n

k

)
Fk.

The charming identity (
2n

n

)
=

n∑

k=0

(
n

k

)2

is a particular case of the well-known Vandermonde convolution formula. According to
equation (I3) in [2], it holds that

FnFn+1 =
n∑

k=0

F 2
k .

Therefore the desired inequality follows immediately from the Cauchy-Schwarz inequality.
Equality is excluded because the corresponding vectors are linearly independent, as is easily
seen (for example, the first component of the vector with Fibonacci entries is 0 while the
first component of the vector with binomial coefficient entries is 1) .

Also solved by Paul S. Bruckman, Kenneth B. Davenport and the proposer.

[1] P. Haukkanen, On a Binomial Sum for the Fibonacci and Related Numbers, The Fibonacci
Quarterly, 34.4 (1996), 326–331.
[2] V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers, Santa Clara, CA, The Fibonacci
Association, 1979.

Errata. In H-669, the identity to be proved should have been
∞∑

n=0

[
1

5n + 1
+

2

5n + 2
+

β2

5n + 3
+

β

5n + 4
− β2

5n + 5

]
(−1)nβ5n = π

(
α2

5

) 3
4

.

PLEASE SEND IN PROPOSALS!
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