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If you wish to have receipt of your submission acknowledged, please include a self-
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Each problem and solution should be typed on separate sheets. Solutions to problems in
this issue must be received by February 15, 2007. If a problem is not original, the proposer
should inform the Problem Editor of the history of the problem. A problem should not be
submitted elsewhere while it is under consideration for publication in this Journal. Solvers are
asked to include references rather than quoting “well-known results”.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√

5)/2, β = (1−
√

5)/2, Fn = (αn − βn)/
√

5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1015 (Correction) Proposed by José Luis Díaz-Barrero and Miquel Grau-
Sánchez, Universidad Politécnica de Cataluña, Barcelona, Spain

Let n be a positive integer. Prove that

(
n∑

k=1

FkF2k

) (
n∑

k=1

F 2
k√
Lk

)2

≥ F 3
nF 3

n+1.

B-1017 (Correction) Proposed by M.N. Deshpande, Nagpur, India

Define {an} by a1 = a2 = 0, a3 = a4 = 1 and

an = an−1 + an−3 + an−4 + k(n)
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for n ≥ 5 where

k(n) =
{

0 if n is odd
in−2 if n is even

and i =
√
−1.

Prove or disprove: an + 2an+2 + an+4 is a Fibonacci number for all integers n ≥ 1.

B-1019 Proposed by Hiroshi Matsui, Naoki Saita, Kazuki Kawata, Yusuke
Sakurama, and Ryohei Miyadera, Kwansei Gakuin University,
Nishinomiya, Japan

(a) Define {an} by a1 = a2 = 1 and

an = an−1 + an−2 +
{

1 if n ≡ 1 (mod 4)
0 if n 6≡ 1 (mod 4)

for n ≥ 3. Express an in terms of Fn.
(b) Prove that limn→∞

an+1
an

= α.

B-1020 Proposed by H.-J. Seiffert, Berlin, Germany

(a) Let (Aj)j≥0 be any sequence of numbers such that Aj 6= 0 and Aj+1 = Aj + Aj−1 for
j ≥ 1. Prove that, for all positive integers n,

A1

n∑
k=1

An−k
0 Fk

n∏
j=k

Fj

Aj

 = Fn.

(b) Deduce the identities

n∑
k=1

2n−kFk

n∏
j=k

Fj

Lj

 = Fn

and

3
n∑

k=1

2n−kF 2
k Fk+1Fk+2 = FnFn+1Fn+2Fn+3.

SOLUTIONS

A Tough Sum

B-1005 Proposed by H.-J. Seiffert, Berlin, Germany
(Vol. 43, no. 3, August 2005)

Prove that, for all integers k and n with 0 ≤ k ≤ n,

2n−2k∑
j=0

(−1)j

(
2n + 1

j

)(
2n− k − j

k

)
Fj = 0.
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Solution by Paul S. Bruckman, Sointula, BC, Canada

Let A(n, k) denote the given expression, and let B(x, n) =
∑n

k=0 A(n, k)xk. Therefore

B(x, n) =
2n∑

j=0

(−1)jFj

(
2n + 1

j

) ∑
0≤2k≤2n−j

(
2n− k − j

k

)
xk.

The inner sum is equal to φ2n−j+1(x), where

φm(x) = (rm − sm)/(r − s), m = 0, 1, 2, · · · , (1)

with

r = r(x) = (1 + θ)/2, s = s(x) = (1− θ)/2, and θ = θ(x) = r − s = (1 + 4x)1/2. (2)

Therefore, since φ0(x) = 0, we see that

B(x, n) =
2n+1∑
j=0

(
2n + 1

j

)
(−1)jFj φ2n+1−j(x). (3)

Now Fj φ2n+1−j(x) = 1/(51/2θ){αj − βj}{r2n+1−j − s2n+1−j}; thus,

B(x, n) = 1/(51/2θ)
2n+1∑
j=0

(
2n + 1

j

)

{r2n+1−j(−α)j − r2n+1−j(−β)j − s2n+1−j(−α)j + s2n+1−j(−β)j}, or :

B(x, n) = 1/(51/2θ){(r − α)2n+1 − (r − β)2n+1 − (s− α)2n+1 + (s− β)2n+1}. (4)

From (2), we observe that r + s = α + β = 1; hence:

r − α = −(s− β), r − β = −(s− α). (5)

Therefore, B(x, n) = 1/(51/2θ){−(s− β)2n+1 + (s− β)2n+1 + (s− α)2n+1 − (s− α)2n+1} = 0.
This is true for all n ≥ 0, but also for all x. Therefore, it follows from the definition of B(x, n)
that A(n, k) = 0 for all n, k with 0 ≤ k ≤ n.

Also solved by G.C. Greubel and the proposer.

A Sequence of Pythagorean Triangles

B-1006 Proposed by Paul S. Bruckman, Canada
(Vol. 43, no. 4, Nov. 2005)
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For n ≥ 1, let {An} and {Bn} be two sequences of positive integers denoting the lengths
of the legs of a Pythagorean triangle such that Bn = 2An − 2(−1)n. Determine {An} and
{Bn} and obtain recurrence relations for these sequences.

Solution by H.-J. Seiffert, Thorwaldsenstr. 13, Berlin, Germany

For the nonnegative integer n, let An = Fn+1Fn+4 and Bn = 2Fn+2Fn+3. Since Fn+1 =
Fn+3 − Fn+2 and Fn+4 = Fn+3 + Fn+2, we have

A2
n + B2

n =
(
F 2

n+3 − F 2
n+2

)2
+ 4F 2

n+2F
2
n+3 =

(
F 2

n+3 + F 2
n+2

)2
,

showing that An and Bn are the lengths of the legs of a Pythagorean triangle. From eqn.
(3.32) of [1], it follows that Bn = 2An − 2(−1)n. Eqns. (3.23) and (3.25) of [1] give

An =
1
5

(L2n+5 + 4(−1)n) and BN =
2
5

(L2n+5 − (−1)n) .

By eqn. (3.29) of [1], there holds the recurrence L2n+9 = 3L2n+7 − L2n+5, n ≥ 0. Thus, the
sequence {An} satisfies the recurrence relation An+2 = 3An+1 − An + 4(−1)n, n ≥ 0, with
initial values A0 = 3 and A1 = 5. Similarly, {Bn} has the recurrence Bn+2 = 3Bn+1 − Bn −
2(−1)n, n ≥ 0, with initial values B0 = 4 and B1 = 12.
Remark: The sequences {An} and {Bn} are not uniquely determined by the conditions of the
proposal, because one may take An = Fk(n)Fk(n)+3 and Bn = 2Fk(n)+1Fk(n)+2, where {k(n)}
is any sequence of positive integers such that k(n) ≡ n + 1 (mod 2) for all n.
Reference:

1. A.F. Horadam & Bro. J.M. Mahon. “Pell and Pell-Lucas Polynomials.” The Fibonacci
Quarterly 23.1 (1985): 7-20.

Also solved by Brian Beasley, George C. Greubel, Russell Hendel, James Sellers,
and the proposer.

Evaluate the Infinite Sum

B-1007 Proposed by Andrew Cusumano, Great Neck, New York
(Vol. 43, no. 4, Nov. 2005)

Prove or disprove:

1
1

+

[
(12 + 1)N − (12)N

]
(1 · 1)N

−
[
(22)N − (22 − 1)N

]
(1 · 2)N

+

[
(32 + 1)N − (32)N

]
(2 · 3)N

−
[
(52)N − (52 − 1)N

]
(3 · 5)N

+

[
(82 + 1)N − (82)N

]
(5 · 8)N

−
[
(132)N − (132 − 1)N

]
(8 · 13)N

+ · · · = αN .

Solution by Brian D. Beasley, Presbyterian College, Clinton, SC
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Using the identity F 2
k + (−1)k = Fk−1Fk+1 (see the Addendum), we express the given

series as

1+
∞∑

k=2

ak := 1+
∞∑

k=2

[(
F 2

k + (−1)k

Fk−1Fk

)N

−
(

F 2
k

Fk−1Fk

)N
]

= 1+
∞∑

k=2

[(
Fk+1

Fk

)N

−
(

Fk

Fk−1

)N
]

.

This series telescopes with partial sum

1 +
n∑

k=2

[(
Fk+1

Fk

)N

−
(

Fk

Fk−1

)N
]

= 1 +

[(
Fn+1

Fn

)N

− 1

]
=
(

Fn+1

Fn

)N

.

Hence

1 +
∞∑

k=2

ak = lim
n→∞

(
Fn+1

Fn

)N

= αN .

Addendum. We note that

F 2
k + (−1)k =

α2k − 2(−1)k + β2k

5
+ (−1)k =

α2k + 3(−1)k + β2k

5

and

Fk−1Fk+1 =
α2k − (α2 + β2)(−1)k−1 + β2k

5
=

α2k + 3(−1)k + β2k

5
.

Also solved by Paul S. Bruckman, George C. Greubel, Russell J. Hendel, H.-J.
Seiffert, and the proposer.

An Odd Type System

B-1008 Proposed by the Problem Editor
(Vol. 43, no. 4, Nov. 2005)

Find all (a, b, c, d) that satisfy the system

a + b + c + d = 0
ab + ac + ad + bc + bd + cd = −3

abc + abd + acd + bcd = 0
abcd = 1.
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Solution by Charles K. Cook, University of South Carolina Sumter, Sumter, SC

Expanding (x− a)(x− b)(x− c)(x− d) = 0 and using the given data, yields the equation
x4 − 3x2 + 1 = 0.

Using the quadradic formula yields x2 = 3±
√

5
2 . Thus x2 = α2 and β2.

Hence the solution is (a, b, c, d) = (α,−α, β,−β) or any permutation thereof.
Emphasized: Kenneth Davenport noted that a similar problem appeared as problem 867 in
the Fall 1995 issue of the Pi Mu Epsilon Journal.

Also solved by Brian D. Beasley, Paul S. Bruckman, George C. Greubel, Ralph
Grimaldi, Roger Haskell, Russell J. Hendel, Gerald A. Heuer, Rebecca A. Hillman,
H.- J. Seiffert, and the proposer.

A Fibonacci Inequality

B-1009 Proposed by José Luis Díaz-Barrero, Universitat Politècnia,
de Catalunya, Barcelona, Spain
(Vol. 43, no. 4, Nov. 2005)

Let n be a positive integer. Prove that

4 + 2
n∑

k=1

 Fk+1

log
(
1 + Fk+1

Fk

)
 < Fn+1 + 3Fn+2.

Solution by Paul S. Bruckman, P.O. Box 150, Sointula, BC V0N 3E0 (Canada)

We begin noting that 1+Fk+1/Fk = Fk+2/Fk = Fk+2/(Fk+2−Fk+1) = (1−Fk+1/Fk+2)−1.
Therefore, if S(n) denotes the expression in the left member of the putative inequality, we see
that S(n) = 4 − 2

∑n
k=1 Fk+2(Fk+1/Fk+2)/ log(1 − Fk+1/Fk+2). Let Fk+1/Fk+2 = y = yk.

Clearly, 0 < y < 1. Note that (using series expansion for instance) −y
log(1−y) < 1− y

2 .

Therefore, S(n) < 4 + 2
∑n

k=1 Fk+2(1 − Fk+1/2Fk+2) = 4 +
∑n

k=1(2Fk+2 − Fk+1) =
4 +

∑n
k=1 Lk+1 = L3 +

∑n
k=1(Lk+3 − Lk+2) = L3 + Ln+3 − L3 = Ln+3. On the other hand,

Fn+1 +3Fn+2 = Fn+3 +2Fn+2 = Fn+4 +Fn+2 = Ln+3. Therefore, the desired result is proven
namely: S(n) < Ln+3, for all n ≥ 1.
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