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PROBLEMS PROPOSED IN THIS ISSUE

H-792 Proposed by George A. Hisert, Berkeley, California.

Consider the 3-sequence Ti+1 = Ti+Ti−1+Ti−2 for all integers i with T0 = 0, T1 = T2 = 1.
Let Si = Ti+Ti−1. Prove that for all integers n positive or negative, we have T 2

n−Tn+1Tn−1 =
T−(n+1) and Tn+1Tn−2 − TnTn−1 = S−(n+1).

H-793 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Bogdan Andrei
Stanciu, Braşov, Romania.

Let en = (1 + 1/n)n. Compute

lim
n→∞

(

en+1
n+1
√

(2n + 1)!!Fn+1 − en
n

√

(2n− 1)!!Fn

)

.

Compute the similar limit with all the F ’s replaced by L’s.

H-794 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

Prove that

3

√

Fn

5Fn+2
+ 3

√

Fn+1

5Fn+2 + 3Fn+1
+ 3

√

Fn+2

5Fn+2 + 3Fn
<

3
√
4 for all n ≥ 0.

H-795 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that
2n
∑

k=1

tan−1

(

2

L2k−1

)

= 2

n
∑

k=1

tan−1

(

1

F4k−2

)

.
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H-796 Proposed by Hideyuki Ohtsuka, Saitama, Japan and Florian Luca,
Johannesburg, South Africa.

Find all solutions (x, y) in positive integers of the equation

tan−1 αx − tan−1 αy = tan−1 x− tan−1 y,

where α is the golden section.
SOLUTIONS

Sums of Squares of Members of r-Generalized Fibonacci Like Sequences

H-759 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 52, No. 3, August 2014)

Let r ≥ 2 be an integer. Define the sequence {Gn} by

Gn = Gn−1 + · · ·+Gn−r (n ≥ 1)

with arbitrary G0, G1, . . . , G−r+1. For an integer n ≥ 1, prove that

n
∑

k=1

G2
k =

r
∑

k=1

k(r − k − 1) + 2

2(r − 1)

k
∑

i=1

(Gn+i−kGn+i −Gi−kGi).

Solution by the proposer.

Let a be a root of the characteristic equation

xr − xr−1 − xr−2 − · · · − x− 1 = 0. (1)

We have

ar+1 − ar = (a− 1)ar = (a− 1)(ar−1 + ar−2 + · · ·+ a+ 1) = ar − 1.

Thus, we have

ar+1 = 2ar − 1. (2)

Using the identity (2), we have

a−r = −a+ 2, ar+2 = 4ar − a− 2 and ar+3 = 8ar − a2 − 2a− 4. (3)

Using WolframAlpha, we have

(a− 1)3
r
∑

k=1

(

k(r − k − 1) + 2)(ak − a−k
)

= (−r + 2)ar+3 + (3r − 4)ar+2

− 2rar+1 − (2ra2 − 3ra+ 4a+ r − 2)a−r − 2a3 + 4a2 + 4a− 2

= 2(r − 1)(a − 1)3,

by (2) and (3). That is,

r
∑

k=1

k(r − k − 1) + 2

2(r − 1)
(an+k − an−k) = an. (4)

Note that the characteristic equation (1) has r distinct roots (see [1]). If a1, a2, . . . , ar are the
roots of (1), then we can write

Gn = c1a
n
1 + c2a

n
2 + · · ·+ ara

n
r , (5)

AUGUST 2016 281



THE FIBONACCI QUARTERLY

where the coefficients c1, c2, . . . , cr depend on G0, G−1, . . . , G−r+1. By (4) and (5), for n ≥ 1,
we have the identity

r
∑

k=1

k(r − k − 1) + 2

2(r − 1)
(Gn+k −Gn−k) = Gn. (6)

For n ≥ 0, we have

r
∑

k=1

k(r − k − 1) + 2

2(r − 1)

k
∑

i=1

(Gn+1+i−kGn+1+i −Gn+i−kGn+i)

=

r
∑

k=1

k(r − k − 1) + 2

2(r − 1)
(Gn+1Gn+1+k −Gn+1−kGn+1)

= Gn+1

r
∑

k=1

k(r − k − 1) + 2

2(r − 1)
(Gn+1+k −Gn+1−k)

= G2
n+1, (7)

by (6). The proof of the desired identity is by mathematical induction on n.

• Letting n = 0 in identity (7), we have

G2
1 =

r
∑

k=1

k(r − k − 1) + 2

2(r − 1)

k
∑

i=1

(G1+i−kG1+i −Gi−kGi).

Thus, the desired identity holds for n = 1.
• We assume that the desired identity holds for n. For n+ 1, we have

n+1
∑

k=1

G2
k = G2

n+1 +

n
∑

k=1

G2
k

= G2
n+1 +

r
∑

k=1

k(r − k − 1) + 2

2(r − 1)

k
∑

i=1

(Gn+i−kGn+i −Gi−kGi)

=

r
∑

k=1

k(r − k − 1) + 2

2(r − 1)

k
∑

i=1

(Gn+1+i−kGn+1+i −Gi−kGi),

by (7). Thus, the desired identity holds for n+ 1.

Editor’s comment: Kenneth B. Davenport points out that in Theorem 3.1 in [2],
Curtis Cooper derived the following formula

n
∑

k=0

G2
k +

r−1
∑

i=2

n−i
∑

k=0

GkGk+i = GnGn+1,

which perhaps can be used to give an alternative proof of the identity of H-759.

References

[1] E. P. Miles, Generalized Fibonacci numbers and associated matrices, The American Math. Monthly, 67.8
(1960), 745–752.

[2] C. Cooper, Two identities involving generalized Fibonacci numbers, J. Inst. Math. Comput. Sci. Math Ser.,
23.1 (2010), 21–26.

Also solved by Dmitry Fleischman.
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An Inequality Involving Powers, Binomial Coefficients and Fibonacci Numbers

H-760 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.
(Vol. 52, No. 4, November 2014)

Prove that if m ≥ 1, k ≥ 1, n ≥ 0 are integers then

mm
2n+1
∑

p=0

(

1 +

p
∑

k=0

(

2n+ 1

p

)(

p

k

)

Fk

)m+1

≥ 5n(m+ 1)m+1L2n+1.

Solution by Hideyuki Ohtsuka.

We use the identities

(i)
n
∑

i=0

(

n

i

)

Fi = F2n (see [1] (47));

(ii)
2n+1
∑

i=0

(

2n+ 1

i

)

F2i = 5nL2n+1 (see [1](70)).

We have
(

m

m+ 1

)m+1 2n+1
∑

p=0

(

1 +

(

2n+ 1

p

) p
∑

k=0

(

p

k

)

Fk

)m+1

=

2n+1
∑

p=0

(

1− 1

m+ 1
+

m

m+ 1

(

2n+ 1

p

)

F2p

)m+1

(by (i))

≥
2n+1
∑

p=0

(

1 + (m+ 1)

(

− 1

m+ 1
+

m

m+ 1

(

2n+ 1

p

)

F2p

))

(by Bernoulli’s inequality)

= m
2n+1
∑

p=0

(

2n+ 1

p

)

F2p = 5nmL2n+1 (by (i)).

Therefore, we obtain the desired identity.

References

[1] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Dover, 2008.

Also solved by Kenneth B. Davenport, Dmitry Fleischman, and the proposers.

A Series Whose Sum Involves π, ln 2 and ζ(3)

H-761 Proposed by Ovidiu Furdui, Campia Turzii, Romania.
(Vol. 52, No. 4, November 2014)

Prove that
∞
∑

n=1

1

n

(

1

n+ 1
− 1

n+ 2
+

1

n+ 3
− · · ·

)2

=
π2 ln 2

6
− ln3 2

3
− 3

4
ζ(3).

Solution by AN-anduud Problem Solving Group.
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We will be using the following four well-known identities:

ln

∫ 1

0

ln(1− x) ln(1 + x)

x
dx = −5

8
ζ(3),

∫ 1

0

ln(1− x) ln(1 + x)

1 + x
dx =

1

24
(8 ln3 2− 2π2 ln 2 + 3ζ(3)),

1

n+ 1
− 1

n+ 2
+

1

n+ 3
− · · · =

∫ 1

0

xn

1 + x
dx = ln 2− n

∫ 1

0
xn−1 ln(1 + x)dx,

∞
∑

n=1

1

n

(

1

n+ 1
− 1

n+ 2
+

1

n+ 3
− 1

n+ 4
+ · · ·

)

=
π2

12
− 1

2
ln2 2.

It follows that
∞
∑

n=1

1

n

(

1

n+ 1
− 1

n+ 2
+

1

n+ 3
− 1

n+ 4
+ · · ·

)2

=
∞
∑

n=1

1

n

(
∫ 1

0

xn

1 + x
dx

)(

1

n+ 1
− 1

n+ 2
+

1

n+ 3
− 1

n+ 4
+ · · ·

)

=

∞
∑

n=1

1

n

(

ln 2− n

∫ 1

0
xn−1 ln(1 + x)dx

)(

1

n+ 1
− 1

n+ 2
+

1

n+ 3
− 1

n+ 4
+ · · ·

)

= ln 2

∞
∑

n=1

1

n

(

1

n+ 1
− 1

n+ 2
+

1

n+ 3
− 1

n+ 4
+ · · ·

)

−
∞
∑

n=1

∫ 1

0
xn−1 ln(1 + x)dx

∫ 1

0

yn

1 + y
dy

=

(

π2

12
− 1

2
ln2 2

)

ln 2−
∫ 1

0
ln(1 + x)

(

∫ 1

0

y

1 + y

∞
∑

n=1

(xy)n−1dy

)

dx

=

(

π2

12
− 1

2
ln2 2

)

ln 2−
∫ 1

0
ln(1 + x)

(
∫ 1

0

y

(1− xy)(1 + y)
dy

)

dx

=

(

π2

12
− 1

2
ln2 2

)

ln 2

+

∫ 1

0

(

ln(1 + x)

(

ln(1− x)

x
− ln(1− x)

1 + x
+

ln 2

1 + x

))

dx

=

(

π2

12
− 1

2
ln2 2

)

ln 2 +

∫ 1

0

ln(1− x) ln(1 + x)

x
dx

−
∫ 1

0

ln(1− x) ln(1 + x)

1 + x
+ ln 2

∫ 1

0

ln(1 + x)

1 + x
dx

=

(

π2

12
− 1

2
ln2 2

)

ln 2− 5

8
ζ(3)− 1

24
(8 ln3 2− 2π2 ln 2 + 3ζ(3)) +

1

2
ln3 2.
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The last expression simplifies to the desired answer

π2

6
ln 2− 1

3
ln3 2− 3

4
ζ(3).

Also solved by Khristo N. Boyadzhiev, G. C. Greubel, Anastasios Kotronis,
Albert Stadler, and the proposer.

Identities with Sums of Powers of Fibonacci Numbers and Binomial Coefficients

H-762 Proposed by George Hisert, Berkeley, California.
(Vol. 52, No. 4, November 2014)

Prove that for any positive integers r and n and positive integer p,

(i)

⌊(p−1)/2⌋
∑

k=0

(−1)k
(

p

k

)

F2(p−2k)r(F
p−k
n+4rF

k
n − (−1)pF k

n+4rF
p−k
n ) = F p

4rFp(n+2r);

(ii)

⌊(p−1)/2⌋
∑

k=0

(−1)k
(

p

k

)

F2(p−2k)r(L
p−k
n+4rL

k
n − (−1)pLk

n+4rL
p−k
n ) = F p

4rLp(n+2r).

Solution by Hideyuki Ohtsuka.

Identity (ii) is not correct. We will prove identity (i). We have

(α2rFn+4r − α−2rFn)
p =

p
∑

k=0

(

p

k

)

(α2rFn+4r)
p−k(−α−2rFn)

k

=

p
∑

k=0

(−1)k
(

p

k

)

α2r(p−2k)F p−k
n+4rF

k
n ,

and

(α2rFn+4r − α−2rFn)
p =

(

α2r(αn+4r − βn+4r)− α−2r(αn − βn)√
5

)p

=

(

(αn+6r − βn+2r)− (αn−2r − βn+2r)√
5

)p

=

(

αn+2r(α4r − α−4r

√
5

)p

= αp(n+2r)F p
4r.

Thus,
p
∑

k=0

(−1)k
(

p

k

)

α2r(p−2k)F p−k
n+4rF

k
n = αp(n+2r)F p

4r.

In the same manner,
p
∑

k=0

(−1)k
(

p

k

)

β2r(p−2k)F p−k
n+4rF

k
n = βp(n+2r)F p

4r.

Therefore,
p
∑

k=0

(−1)k
(

p

k

)

F2r(p−2k)F
p−k
n+4rF

k
n = Fp(n+2r)F

p
4r. (1)
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We have
p
∑

k=⌊(p+1)/2⌋

(−1)k
(

p

k

)

F2r(p−2k)F
p−k
n+4rF

k
n

=

⌊(p−1)/2⌋
∑

k=0

(−1)p−k

(

p

p− k

)

F2r(p−2(p−k))F
k
n+4rF

p−k
n

= −
⌊(p−1)/2⌋
∑

k=0

(−1)p−k

(

p

k

)

F2r(p−2k)F
k
n+4rF

p−k
n , (2)

since F2r(p−2(p−k)) = F−2r(p−2k) = −F2r(p−2k). The left-hand side of (1) is

⌊(p−1)/2⌋
∑

k=0

(−1)k
(

p

k

)

F2r(p−2k)F
p−k
n+4rF

k
n +

p
∑

k=⌊(p+1)/2⌋

(−1)k
(

p

k

)

F2r(p−2k)F
p−k
n+4rF

k
n

=

⌊(p−1)/2⌋
∑

k=0

(−1)k
(

p

k

)

F2r(p−2k)(F
p−k
n+4rF

k
n − (−1)pF k

n+4rF
p−k
n ),

by (2). Therefore, we obtain (i).

Editor’s comment: The proposer noted that the case p = 7 of (i) is Advanced Problem
H-324, which inspired him to propose the present generalization.

Also solved by the proposer.

Errata: The right hand–side of the identity proposed at H-762 (ii) should be 5p/2F p
4rFp(n+2r)

for even p and 5(p−1)/2F p
4rLp(n+2r) for odd p. The editor and proposer thank Hideyuki Ohtsuka

for this correction.

Late Acknowledgement. Adnan A. Ali solved H-752 and Kenneth B. Davenport solved
H-758.
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