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PROBLEMS PROPOSED IN THIS ISSUE

H-825 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai Stan-
ciu, Buzău, Romania

If a, b, c > 0 and n is a positive integer, prove that

2

(

(

a

Fnb+ Fn+1c

)3

+

(

b

Fnc+ Fn+1a

)3

+

(

c

Fna + Fn+1b

)3
)

+ 3
abc

(Fna + Fn+1b)(Fnb+ Fn+1c)(Fnc+ Fn+1a)
≥ 9

F 3
n+2

.

H-826 Proposed by Hideyuki Ohtsuka, Saitama, Japan
For an integer n ≥ 0, prove that

∑

a+b=n
a,b≥0

1

L2a3bF2a3b+1

=
F3n+1−2n+1

F3n+1F2n+1

.

H-827 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai Stan-
ciu, Buzău, Romania

Let (an)n≥0 be a sequence of positive real numbers such that limn→∞ an+1/(nan) =
a > 0. Compute

lim
m→∞

(

lim
n→∞

((

n+1
√
an+1

Fm/Fm+1 − ( n
√
an)

Fm/Fm+1

)

nFm−1/Fm

))

.
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H-828 Proposed by Kenneth Davenport, Dallas, PA
Find a closed form expression for

n
∑

k=0

kT 2
k ,

where (Tk)k≥0 is the sequence of Tribonacci numbers satisfying T0 = 0, T1 = T2 = 1,
and Tk+3 = Tk+2 + Tk+1 + Tk for all k ≥ 0.

SOLUTIONS

Closed form for the sum of a series

H-791 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 54, No. 2, May 2016)

For an integer n ≥ 0, find a closed form expression for the sum
n
∑

k=0

(−1)2
k

F3k+1(L3kL3k+1 · · ·L3n)2
.

Solution by the proposer

We find the identity
n
∑

k=0

(−1)2
k

F3k+1(L3kL3k+1 · · ·L3n)2
= − 1

F3n+1

. (1)

The proof of (1) is by mathematical induction on n. For n = 0, we have LS = RS =
−1/2. We use the identities:

(1) LaFa = F2a (see [1] (13));
(2) Fa+b + (−1)bFa−b = FaLb (see [1] (15a)).

We assume (1) holds for n. For n + 1, we have

n+1
∑

k=0

(−1)2
k

F3k+1(L3kL3k+1 · · ·L3n+1)2

=
1

F3n+2L2
3n+1

+
1

L2
3n+1

n
∑

k=0

(−1)2
k

F3k+1(L3kL3k+1 · · ·L3n)2

=
1

F3n+2L2
3n+1

− 1

L2
3n+1F3n+1

= − F3n+2 − F3n+1

F3n+2F3n+1L2
3n+1

= − F2·3n+1L3n+1

F3n+2F2·3n+1L3n+1

(by (1) and (2))

= − 1

F3n+2

.

Therefore, (1) holds for all n ≥ 0.

[1] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Dover, 2008.

Partially solved by Dmitry Fleischman.
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Some Tribonacci identities

H-792 Proposed by George A. Hisert, Berkeley, CA
(Vol. 54, No. 3, August 2016)

Consider the 3-sequence Ti+1 = Ti + Ti−1 + Ti−2 for all integers i with T0 = 0,
T1 = T2 = 1. Let Si = Ti + Ti−1. Prove that for all integers n positive or negative, we
have T 2

n − Tn+1Tn−1 = T−(n+1) and Tn+1Tn−2 − TnTn−1 = S−(n+1).

Solution by Brian Bradie

Anantakitpaisal and Kuhapatanakul [1] provide the following proof for the identity
T 2
n − Tn−1Tn+1 = T−(n+1). It is known that





Tn+k

Tn+k−1

Tn+k−2



 = An





Tk

Tk−1

Tk−2



 , where A =





1 1 1
1 0 0
0 1 0



 .

It follows that

T 2
n − Tn−1Tn+1 =

∣

∣

∣

∣

∣

∣

Tn+1 Tn+2 1
Tn Tn+1 0
Tn−1 Tn 0

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

An





T1

T0

T−1



 An





T2

T1

T0



 AnA−n





T1

T0

T−1





∣

∣

∣

∣

∣

∣

= |An|

∣

∣

∣

∣

∣

∣

1 1 T−n+1

0 1 T−n

0 0 T−n−1

∣

∣

∣

∣

∣

∣

= 1 · T−(n+1) = T−(n+1).

Proceeding as above, we have

Tn+1Tn−2 − TnTn−1 =

∣

∣

∣

∣

∣

∣

Tn+2 Tn 1
Tn+1 Tn−1 0
Tn Tn−2 0

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

An





T2

T1

T0



 An





T0

T−1

T−2



 AnA−n





T1

T0

T−1





∣

∣

∣

∣

∣

∣

= |An|

∣

∣

∣

∣

∣

∣

1 0 T−n+1

1 0 T−n

0 1 T−n−1

∣

∣

∣

∣

∣

∣

= T−n+1 − T−n = T−n−1 + T−n−2 = S−n−1 = S−(n+1).

[1] P. Anantakitpaisal and K. Kuhapatanakul, Reciprocal sums of the Tribonacci num-

bers, Journal of Integer Sequences, 19 (2016), Article 16.2.1.

Also solved by Dmitry Fleischman, Hideyuki Ohtsuka, and the proposer.
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The limit of an expression involving double factorials and Fibonacci numbers

H-793 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Bogdan Andrei
Stanciu, Braşov, Romania (Vol. 54, No. 3, August 2016)

Let en = (1 + 1/n)n. Compute

lim
n→∞

(

en+1
n+1
√

(2n+ 1)!!Fn+1 − en
n

√

(2n− 1)!!Fn

)

.

Compute the similar limit with all the F ’s replaced by L’s.

Solution by Brian Bradie

For large n, we have the following asymptotic equalities
(

1 +
1

n

)n

∼ e

(

1− 1

2n

)

,

(2n− 1)!! ∼ 2n+1/2nne−n,

n

√

(2n− 1)!! ∼ 2n

e
,

n

√

Fn ∼ α.

It follows that
en

n

√

(2n− 1)!!Fn ∼ (2n− 1)α,

so
lim
n→∞

(en+1
n+1
√

(2n+ 1)!!Fn+1 − en
n

√

(2n− 1)!!Fn) = 2α.

The same holds for F replaced by L.

Also solved by Kenneth Davenport, Dmitry Fleischman, Ángel Plaza,
David Terr, and the proposers.

An upper bound for a sum of cubic roots

H-794 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai Stan-
ciu, Buzău, Romania (Vol. 54, No. 3, August 2016)

Prove that

3

√

Fn

5Fn+2
+ 3

√

Fn+1

5Fn+2 + 3Fn+1
+ 3

√

Fn+2

5Fn+2 + 3Fn
<

3
√
4 for all n ≥ 0.

Solution by Ángel Plaza

Since Fn+2 = Fn+1 + Fn, it follows that
Fn

5Fn+2

≤ 1

10
,

Fn+1

5Fn+2 + 3Fn+1

≤ 1

8
, and

Fn+2

5Fn+2 + 3Fn

≤ 1

5
. Therefore, the left side of the proposed inequality, LS, is

LS <
3

√

1

10
+

3

√

1

8
+

3

√

1

5
= 1.5489 <

3
√
4 = 1.5874.
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Also solved by Brian Bradie, Miguel Cidra, Kenneth Davenport, Dmitry
Fleischman, Wei-Kai Lai, Hideyuki Ohtsuka, and the proposers.

Sums of arc-tangents

H-795 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 54, No. 3, August 2016)

Prove that
2n
∑

k=1

tan−1

(

2

L2k−1

)

= 2

n
∑

k=1

tan−1

(

1

F4k−2

)

.

Solution by Ángel Plaza

By induction. For n = 1, we have

tan−1

(

2

L1

)

+ tan−1

(

2

L3

)

= tan−1 2 + tan−1 1

2
=

π

2
= 2 tan−1 1 = 2 tan−1

(

1

F2

)

.

Let us now assume that the identity holds for n by the induction hypothesis. We
have to prove that it also holds for n + 1. Equivalently, we will prove

tan−1

(

2

L4n+1

)

+ tan−1

(

2

L4n+3

)

= 2 tan−1

(

1

F4n+2

)

.

Taking tan of the left side, we obtain

tanLS =

2
L4n+1

+ 2
L4n+3

1− 2
L4n+1

2
L4n+3

=
2 (L4n+1 + L4n+3)

L4n+1L4n+3 − 4

=
10F4n+2

L8n+4 − 1
,

since L4n+1L4n+3 = L8n+4 + 3.
On the other hand, taking tan of the right side, we have

tanRS =

2
F4n+2

1−
(

1
F4n+2

)2 =
2F4n+2

F 2
4n+2 − 1

.

The conclusion follows since

5F 2
4n+2 − 5 = L8n+4 − 1.

Also solved by Miguel Cidra, Mithun Kumar Das, Kenneth Davenport,
Dmitry Fleischman, David Terr, and the proposer.
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