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PROBLEMS PROPOSED IN THIS ISSUE

H-773 Proposed by H. Ohtsuka, Saitama, Japan.

Let Bn be the Bernoulli numbers defined by the generating function

x

ex − 1
=

∞
∑

n=0

Bn

n!
xn.

For integers n ≥ 0 and m ≥ 0, prove that

n
∑

k=0

(

2n

2k

)

F2mkB2(n−k) =
n√
5

[

2

Lm
∑

r=1

(αm − r)2n−1 + Lm(2n−1)

]

.

H-774 Proposed by G. C. Greubel, Newport News, VA.

1. Let m ≥ 0, p ≥ 0 be integers. Evaluate the series
∞
∑

n=0

Fn+pLn+m

(n+ p)!(n+m)!

in terms of the Bessel functions.
2. Evaluate the case m = p in terms of a series of modified Bessel functions of the first

kind. Take the limiting case m → 0.
3. Show that when p = 0 the series is given by

∞
∑

n=0

FnLn+m

n!(n+m)!
=

1√
5
(Im(2α) − Im(2β)) − FmJm(2).

H-775 Proposed by H. Ohtsuka, Saitama, Japan.

Let c be any real number c 6= 2, −L2n for n ≥ 0. Let

γc =
√
5

∞
∏

n=1

(

1 +
c

L2n

)−1

.
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Prove that
∞
∑

k=1

1

(L2 + c)(L4 + c) · · · (L2k + c)
=

γc + c− 3

c2 − c− 2
.

H-776 Proposed by H. Ohtsuka, Saitama, Japan.

Determine

(i)

∞
∑

n=0

(−1)n tan−1 1

L3n
and (ii)

∞
∑

n=1

tan−1 1

F2n
tan−1 1

L2n
.

SOLUTIONS

Sums of Fibonacci Numbers with Indices Given by Quadratic Forms

H-742 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 51, No. 3, August 2013)

For positive integers n, m and p with p < m find a closed form expression for

n
∑

k1,...,km=1

F2k1 · · ·F2kmF2(k2
1
+···+k2p−k2p+1

−···−k2m).

Solution by the proposer.

We have
(

n
∑

k=1

α2k2F2k

)p( n
∑

k=1

β2k2F2k

)m−p

=

n
∑

k1,...,km=1

α2(k2
1
+···+k2p−k2p+1

−···−k2m)F2k1 · · ·F2km , (1)

and
(

n
∑

k=1

β2k2F2k

)p( n
∑

k=1

α2k2F2k

)m−p

=

n
∑

k1,...,km=1

β2(k21+···+k2p−k2p+1−···−k2m)F2k1 · · ·F2km . (2)

We have

n
∑

k=1

α2k2F2k =

n
∑

k=1

α2k2
(

α2k − α−2k

√
5

)

=
1√
5

n
∑

k=1

(α2k(k+1) − α2(k−1)k)

=
1√
5
(α2n(n+1) − 1) = αn(n+1) · α

n(n+1) − α−n(n+1)

√
5

= αn(n+1)Fn(n+1). (3)

Similarly,
n
∑

k=1

β2k2F2k = βn(n+1)Fn(n+1). (4)
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Using (1), (2), (3) and (4), we have

n
∑

k1,...,km=1

F2k1F2k2 · · ·F2kmF2(k2
1
+···+k2p−k2p+1

−···−k2m)

=
1√
5

{(

n
∑

k=1

α2k2F2k

)p( n
∑

k=1

β2k2F2k

)m−p

−
(

n
∑

k=1

β2k2F2k

)p( n
∑

k=1

α2k2F2k

)m−p}

=
1√
5

(

αpn(n+1)F p
n(n+1)β

(m−p)n(n+1)Fm−p
n(n+1) − βpn(n+1)F p

n(n+1)α
(m−p)n(n+1)Fm−p

n(n+1)

)

=
1√
5
(α(2p−m)n(n+1) − β(2p−m)n(n+1))Fm

n(n+1) = F(2p−m)n(n+1)F
m
n(n+1).

Also solved by Dmitry Fleischman.

On the Fermat Quotient Modulo p

H-743 Proposed by Romeo Meštrović, Kotor, Montenegro.
(Vol. 51, No. 4, November 2013)

Let p ≥ 5 be a prime and qp(2) = (2p−1− 1)/p be the Fermat quotient of p to base 2. Prove
that

qp(2) ≡ −1

2

(p−1)/2
∑

k=1

(−3)k

k
(mod p).

Solution by the proposer.

Since

1± i
√
3 = 2

(

cos
π

3
± i sin

π

3

)

,

applying the de Moivre’s formula, we have

(1 + i
√
3)p + (1− i

√
3)p = 2p

((

cos
π

3
+ i sin

π

3

)p
+
(

cos
π

3
− i sin

π

3

)p)

= 2p · 2 cos pπ
3

= 2p, (1)

where we used the fact that p ≥ 5 is odd and so cos(pπ/3) = 1/2.
On the other hand, by the binomial theorem, we obtain

(1 + i
√
3)p + (1− i

√
3)p =

p
∑

k=0

(

p

k

)

(i
√
3)k +

p
∑

k=0

(

p

k

)

(−1)k(i
√
3)k

= 2
∑

0≤k≤p−1
2|k

(

p

k

)

(i
√
3)k = 2

(p−1)/2
∑

k=0

(

p

2k

)

(i
√
3)2k

= 2

(p−1)/2
∑

k=1

(

p

2k

)

(−3)k + 2. (2)
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The equalities (1) and (2) obviously yield the identity

(p−1)/2
∑

k=1

(

p

2k

)

(−3)k = 2p−1 − 1. (3)

By the identity

(

p

2k

)

=
p

2k

(

p− 1

2k − 1

)

with k = 1, . . . , (p− 1)/2, (3) becomes

1

2

(p−1)/2
∑

k=1

(−3)k

k

(

p− 1

2k − 1

)

=
2p−1 − 1

p
:= qp(2). (4)

Finally, since
(

p− 1

2k − 1

)

=
(p− 1)(p − 2) · · · (p − (2k − 1))

(2k − 1)!

≡ (−1)(−2) · · · (−(2k − 1))

(2k − 1)!
(mod p)

≡ (−1)2k−1 (mod p) ≡ −1 (mod p),

substituting this into (4), we obtain the desired congruence.

Inequalities Involving Sums of Reciprocals of Fibonacci and Lucas Numbers

H-744 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.
(Vol. 51, No. 4, November 2013)

Prove that

(1) en+3−Ln+2 ≤
(

1

n

n
∑

k=1

1

Lk

)n

; (2) en+2−LnLn+1 ≤
(

1

n

n
∑

k=1

1

L2
k

)n

;

(3) en+1−Fn+2 ≤
(

1

n

n
∑

k=1

1

Fk

)n

; (4) en−FnFn+1 ≤
(

1

n

n
∑

k=1

1

F 2
k

)n

.

Solution by Robinson Higuita, Medelĺın, Colombia.

First of all, we prove that if x ≥ 1, then ex ≤ ex, or equivalently, e1−x ≤ 1
x . Let g(x) =

ex− ex. Since g′(x) = ex− e > 0 for x > 1, we have that g is increasing in (1,∞]. It is easy to
see that ex−ex ≥ 0 for x ≥ 1. This implies that ex ≤ ex all 1 ≤ x. Therefore, e1−x ≤ 1

x . From
this and the inequality of arithmetic and geometric means, we have that for every sequence
{xk}1≤k≤n, with 1 ≤ xk, it holds that

en−
∑n

k=1
xk = e1−x1e1−x2 . . . e1−xn ≤

n
∏

k=1

1

xk
≤
(

1

n

n
∑

k=1

1

xk

)n

,

namely,

en−
∑n

k=1
xk ≤

(

1

n

n
∑

k=1

1

xk

)n

. (1)
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On the other hand, it is known that (see for example pages 70, 77 and 78 in [1])

n
∑

k=1

Lk = Ln+2 − 3,

n
∑

k=1

Fk = Fn+2 − 1,

n
∑

k=1

L2
k = LnLn+1 − 2 and

n
∑

k=1

F 2
k = FnFn+1.

Therefore, if in (1) we take xk = Lk, xk = Fk, xk = L2
k and xk = F 2

k , we obtain

en−(Ln+2−3) = en−
∑n

k=1 Lk ≤
(

1

n

n
∑

k=1

1

Lk

)n

,

en−(Fn+2−1) = en−
∑n

k=1 Fk ≤
(

1

n

n
∑

k=1

1

Fk

)n

,

en−(LnLn+1−2) = en−
∑n

k=1 L
2
k ≤

(

1

n

n
∑

k=1

1

L2
k

)n

,

en−FnFn+1 = en−
∑n

k=1 F
2
k ≤

(

1

n

n
∑

k=1

1

F 2
k

)n

,

respectively.

References

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Inc., New York, 2001.

Also solved by Kenneth B. Davenport, Dmitry Fleischman, Harris Kwong,
Hideyuki Ohtsuka, and the proposers.

On a Trigonometric Equation

H-745 Proposed by Kenneth B. Davenport, PA.
(Vol. 51, No. 4, November 2013)

Prove that (a2 − 1) cos(n + 3)θ − 2
√
a cosnθ = (a − 1)2 cos(n + 1)θ, where a is the real

number satisfying a3 = a2 + a+ 1 and θ is given by cos θ = (1− a)
√
a/2.

This problem was withdrawn in Vol. 52, No. 1, February 2014. Meanwhile,
Dmitry Fleischman, G. C. Greubel, Zbigniew Jakubczyk, Anastasios Kotronis,
and the proposer had provided solutions.

An Identity with Fibonomial Coefficients

H-746 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 51, No. 4, November 2013)

Define the generalized Fibonomial coefficient

(

n

k

)

F ;m

by

(

n

k

)

F ;m

=
FmnFm(n−1) · · ·Fm(n−k+1)

FmkFm(k−1) · · ·Fm
for 0 < k ≤ n
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with

(

n

0

)

F ;m

= 1 and

(

n

k

)

F ;m

= 0 (otherwise). Let εi = (−1)(m+1)i. For positive integers

n,m and s prove that

∑

i+j=2s

εi

(

n

i

)

F ;m

(

n

j

)

F ;m

= εs

(

n

s

)

F ;2m

.

Solution by the proposer.

Let

(

n

k

)

q

be the q-binomial coefficient. The q-binomial theorem is given by

n
∑

k=0

xkqk(k+1)/2

(

n

k

)

q

=

n
∏

k=1

(1 + xqk). (1)

Let x = αm(n+1)z, q = (β/α)m = (−α−2)m. We have

n
∑

k=0

xkqk(k+1)/2

(

n

k

)

q

=

n
∑

k=0

αmk(n+1)zk(−α−2)mk(k+1)/2
k
∏

r=1

1− (β/α)m(n−r+1)

1− (β/α)mr

=

n
∑

k=0

(−1)mk(k+1)/2αmk(n+1)−mk(k+1)zk
k
∏

r=1

αm(n−r+1) − βm(n−r+1)

αmr − βmr
· α2mr−m(n+1)

=

n
∑

k=0

(−1)mk(k+1)/2zk
k
∏

r=1

Fm(n−r+1)

Fmr
=

n
∑

k=0

(−1)mk(k+1)/2

(

n

k

)

F ;m

zk,

and

n
∏

k=1

(1 + xqk) =

n
∏

k=1

(1 + αm(n+1)(β/α)mkz) =

n
∏

k=1

(1 + αm(n−k+1)βmkz).

Therefore, by (1), we obtain

n
∑

k=0

(−1)mk(k+1)/2

(

n

k

)

F ;m

zk =

n
∏

k=1

(1 + αm(n−k+1)βmkz). (2)

Replacing z by −z in (2) we get

n
∑

k=0

(−1)mk(k+1)/2+k

(

n

k

)

F ;m

zk =

n
∏

k=1

(1− αm(n−k+1)βmkz). (3)
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Using the identities (2) and (3), we have
n
∑

k=0

(−1)k
(

n

k

)

F ;2m

z2k =
n
∏

k=1

(1− α2m(n−k+1)β2mkz2)

=
n
∏

k=1

(1− αm(n−k+1)βmkz)(1 + αm(n−k+1)βmkz)

=

(

n
∑

i=0

(−1)mi(i+1)/2+i

(

n

i

)

F ;m

zi

)





n
∑

j=0

(−1)mj(j+1)/2

(

n

j

)

F ;m

zj





=

2n
∑

r=0





∑

i+j=r

(−1)(m/2)(i2+i+j2+j)+i

(

n

i

)

F ;m

(

n

j

)

F ;m



 zr.

By comparing coefficients of z2s we get
∑

i+j=2s

(−1)(m/2)(i2+i+j2+j)+i

(

n

i

)

F ;m

(

n

j

)

F ;m

= (−1)s
(

n

s

)

F ;2m

.

Here, since i+ j = 2s, we have
m

2
(i2 + i+ j2 + j) =

m

2
(i2 + i+ (2s− i)2 + (2s− i)) = mi2 + 2ms2 − 2msi+ms.

Therefore, we have
∑

i+j=2s

(−1)mi+ms+i

(

n

i

)

F ;m

(

n

j

)

F ;m

= (−1)s
(

n

s

)

F ;2m

,

which is the desired identity.

Solver’s note: From the identity in this problem, we obtain the following identity easily:

2n
∑

k=0

εk

(

2n

k

)2

F ;m

= εn

(

2n

n

)

F ;2m

.

Moreover, we obtain the following identity in the same manner:
∑

f(a,a1,...,ar)=2rs

εa,a1

(

n

a

)

F ;m

(

n

a1

)

F ;m

(

n

a2

)

F ;2m

. . .

(

n

ar

)

F ;2r−1m

= (−1)s
(

n

s

)

F ;2rm

,

where f(a, a1, a2, . . . , ar) = a+ a1 + 2a2 + · · · + 2r−1ar and εi,j = (−1)m/2(i2+i+j2+j)+i.

Also partially solved by Dmitry Fleischman.
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