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BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1071 Proposed by Hideyuki Ohtsuka, Saitama, Japan

Prove the following identities:

(1) F 4
n−1 + 4F 4

n + 4F 4
n+1 + F 4

n+2 = 6F 2
2n+1,

(2) F 6
n−1 + 8F 6

n + 8F 6
n+1 + F 6

n+2 = 10F 3
2n+1.
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B-1072 Proposed by José Luis D́ıaz-Barrero, Universidad Politécnica de Cataluña,
Barcelona, Spain

Let n be a positive integer. For any real number, γ > 1, show that

1

γ

n∑

k=1

(

F 2γ
k L

2(1−γ)
k + (γ − 1)L2

k

)

≥ FnFn+1.

B-1073 Proposed by M. N. Deshpande, Nagpur, India

Three integers (a, b, c) form a Diophantine Triple (DT) if and only if ab + 1, ac + 1, and
bc + 1 are perfect squares. It is known that (F2n, F2n+2, F2n+4) is a DT for every integer n.
If n is odd, prove that there exists an integer m such that (m − F2n+4,m − F2n+2,m − F2n)
is a DT. Also, if n = 2k + 1 and the corresponding m is denoted by mk, derive a recurrence
relation involving mk.

B-1074 Proposed by Pantelimon George Popescu, Bucureşt, România and José
Luis D́ıaz-Barrero, Universidad Politécnica de Cataluña, Barcelona,
Spain

Let n ≥ 3 be a positive integer. Prove that

1
√

1− 1
F 2
n

+
1

√

1− 1
L2
n

>
2

√

1−
(
Fn+1

F2n

)2
.

B-1075 Proposed by Paul S. Bruckman, Nanaimo, BC, Canada

The Fibonacci polynomials Fn(x) may be defined by the following expression:

Fn+1(x) =

[n/2]
∑

k=0

(
n− k

k

)

xn−2k for n = 0, 1, 2, . . . .

Prove the “inverse” relation:

xn =

n∑

k=0

(−1)k
(
n

k

)

Fn+1−2k(x) for n = 0, 1, 2, . . . .
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SOLUTIONS

A Quartic Inequality

B-1051 Proposed by Charles K. Cook, Sumter, SC
(Vol. 46/47.3, August 2008/2009)

For all positive integers n show that F 4
n + L4

n − 6F2n + 5 > 0.

Solution by Sergio Falcón and Ángel Plaza, ULPGC, Spain

Let A(n) = F 4
n + L4

n − 6F2n. Since Fn = Fn+1 − Fn−1, Ln = Fn+1 + Fn−1, and F2n =
(Fn+1 − Fn−1)Fn,

A(n) = (Fn+1 − Fn−1)
4 + (Fn+1 + Fn−1)

4 − 6(F 2
n+1 − F 2

n−1)

= 2F 4
n+1 + 12F 2

n+1F
2
n−1 + 2F 4

n−1 − 6F 2
n+1 + 6F 2

n−1

= 2F 2
n+1(F

2
n+1 − 3) + 2F 2

n−1(F
2
n−1 + 6F 2

n+1 + 3).

Note that for n = 1, A(1) + 5 = 2 · 1(1 − 3) + 5 = 1 > 0. For n ≥ 2, since Fn+1 ≥ 2, then
A(n) > 1, and therefore, A(n) + 5 > 0.

Also solved by Gurdial Arora and Andrea Edwards (jointly), Paul S. Bruckman,
G. C. Greubel, Russell J. Hendel, Jaraslav Seibert, James A. Sellers, and the
proposer.

A Convoluted Identity

B-1052 Proposed by Br. J. Mahon, Australia
(Vol. 46/47.3, August 2008/2009)

Prove that
∞∑

r=2

F 2
r + (−1)rr2

F
(1)
r+1F

(1)
r

=
5

α

where {F (1)
n } is the sequence of first order convolutions of the Fibonacci numbers defined by

F (1)
n =

n∑

i=0

Fn−iFi.

Solution by Paul S. Bruckman, Surrey, BC, Canada

Without too much effort, we may show that F
(1)
n = (1/5){nLn − Fn}, n = 0, 1, 2, . . .. For

example, a convolution approach yields the desired formula. Note that F
(1)
n > 0 if n ≥ 2.

Consider the partial sum

Sn =

n∑

r=2

{(Fr)
2 + (−1)rr2}/F (1)

r+1F
(1)
r , n ≥ 2.
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Next, we show that Sn =

n∑

r=2

{Ar+1/F
(1)
r+1 − Ar/F

(1)
r }, where Ar = (5/2)(r − 1)Fr. To verify

this, note that Ar+1F
(1)
r −ArF

(1)
r+1

= (1/2)rFr+1{rLr − Fr} − (1/2)(r − 1)Fr{(r + 1)Lr+1 − Fr+1}
= r2/2LrFr+1 − r/2Fr+1Fr − (r2 − 1)/2Lr+1Fr + (r − 1)/2Fr+1Fr.

Now note that LrFr+1 − Lr+1Fr = 2(−1)r , and Lr+1 = Fr+1 + 2Fr. Therefore,

Ar+1F
(1)
r −ArF

(1)
r+1 = r2(−1)r + (Fr)

2,

which proves the indicated telescoping formula for Sn.

Thus, we easily evaluate Sn as Sn = An+1/F
(1)
n+1 −A2/F

(1)
2 . We note that

An+1/F
(1)
n+1 = (25/2)nFn+1/{(n + 1)Ln+1 − Fn+1}

= (25/2)nFn+1/{nLn+1 + 2Fn} ∼ (5
√
5/2)nαn+1/{nαn+1 + 2αn/

√
5}

= (5
√
5/2){1 + 0(1/n)}−1

= (5
√
5/2){1 + 0(1/n)},

as n → ∞. Also, A2/F
(1)
2 = 5/2. Therefore, Sn → S as n → ∞, where S = (5/2){

√
5− 1} =

5/α.

Also solved by the proposer.

Cubic Root Inequality

B-1053 Proposed by José Luis D́ıaz-Barrero and Miquel Grau-Sánchez, Univer-
sidad Politècnica de Cataluña, Barcelona, Spain
(Vol. 46/47.3, August 2008/2009)

Let n be a nonnegative integer. Prove that

1

Fn+2

(
3
√

FnFn+1 +
3
√

Fn+2Fn+3

)

<
√
6.

Solution by Charles K. Cook, Sumter, SC

The identity Fn + Fn+2 = Ln+1 will be used as needed. Note first that the arithmetic,
geometric mean inequality of 3 integers, (1, a, b) yields

3
√

FnFn+1 ≤
1 + Fn + Fn+1

3
and 3

√

Fn+2Fn+3 ≤
1 + Fn+2 + Fn+3

3
.

Summing the righthand side yields

2 + Fn + Fn+1 + Fn+2 + Fn+3

3
=

2 + Ln+1 + Ln+2

3
=

2 + Ln+3

3
.

Thus,
3
√
FnFn+1 +

3
√
Fn2Fn+3

Fn+2
≤ 2 + Ln+3

3Fn+2
.
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Next, it is immediate that 4 ≤ 2Fn+Fn+2. This implies 4+2Fn+1 ≤ 3Fn+2. Thus, 4+2Fn+3 ≤
5Fn+2 and so 4 + 2Fn+4 ≤ 7Fn+2. Therefore, 4 + 2Fn+4 + 2Fn+2 ≤ 9Fn+2. It follows that

4 + 2Ln+3 ≤ 9Fn+2 and 2+Ln+3

3Fn+2
≤ 3

2 = 1.5 <
√
6. Hence, the desired inequality is satisfied.

Also solved by Paul S. Bruckman, Kenneth B. Davenport, Russell J. Hendel,
Jaraslav Seibert, and the proposer.

A Converging Fibonacci Quotient

B-1054 Proposed by H.- J. Seiffert, Berlin, Germany
(Vol. 46/47.3, August 2008/2009)

Show that the sequence {xn}n≥1 defined recursively by

x1 = 1 and xn+1 =
Fnxn + Fn+1

Fnxn + Fn−1
for n ≥ 1,

converges and find the limit.

Solution by Paul S. Bruckman, Surrey, BC, Canada

For the moment, suppose that xn → x as n → ∞. We also know that Fn ∼ αn/
√
5 as

n → ∞. Therefore, our supposition implies x = (x + α)/(x − β), which yields the quadratic
equation x2 − β2x− α = 0. Clearly, we must have x > 0. Solving the quadratic and rejecting
the negative root, we obtain x = (1/2){β2 +(5+α)1/2} ≈ 1.477259996. Therefore, if the limit
exists, it must be equal to this last value.

Consider an auxiliary sequence {yn} defined as y1 = 1, yn+1 = (yn+α)/(yn−β), n = 1, 2, . . ..
We see that yn → x as n → ∞. Moreover, the convergence is faster than is the case with
the original sequence {xn}. Next, note that yn+1 = 1 + 1/(yn − β). Let zn = yn − β. Then
zn+1 = α + 1/zn, with z1 = α. We see that zn converges to some value, say z, as n → ∞;
moreover, z = [α,α, α, . . .] = [α], an infinite periodic simple continued fraction. It follows that

x exists, and that x = z + β. In addition, zn = [

n terms
︷ ︸︸ ︷
α,α, . . . , α], and yn = zn + β. Alternatively,

we may say that x = [1;α].

Also solved by G. C. Greubel, Russell J. Hendel, and the proposer.

Diaphontine Equation But Fibonacci Solutions

B-1055 Proposed by G. C. Greubel, Newport News, VA
(Vol. 46/47.3, August 2008/2009)

Find all integer solutions to the equation

x2 + 6xy + 4y2 = 4.

Solution by Herman Roelants, Institute of Philosophy, University of Louvain,
Belgium
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Letting x (necessarily even) = 2X leads to 4(X + y)2 + 4Xy = 4. Now using 4Xy =
(X+y)2− (X−y)2 becomes (X−y)2−5(X+y)2 = −4. It is well-known [1, p. 30–32] that all
solutions of a2−5b2 = −4 in positive integers are given by the pairs (an, bn) = (L2n+1, F2n+1).

We now easily derive that xn = 2Xn = L2n+1+F2n+1 = F2n+F2n+1+F2n+1 = 2F2n+2 and

yn =
F2n+1 − L2n+1

2
= −F2n.

So all integer solutions of the proposed equation are given by the pairs (x = 2F2n+2, y = −F2n)
and (y = 2F2n+2, x = −F2n), given the symmetrical roles of x and y.
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