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sity, 800 University Drive, Maryville, MO 64468, or by email at reuler@nwmissouri.edu. All
solutions to others’ proposals must be submitted to the Solutions Editor, DR. JAWAD SADEK,
Department of Mathematics and Statistics, Northwest Missouri State University, 800 Univer-
sity Drive, Maryville, MO 64468.

If you wish to have receipt of your submission acknowledged, please include a self-addressed,
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Each problem and solution should be typed on separate sheets. Solutions to problems in this
issue must be received by August 15, 2011. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results”.

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1081 Proposed by Br. J. M. Mahon, Kensington, Australia.

Prove that

F 2
n+1F

2
n−1 − F 4

n =
(−1)n

5
[2L2n + (−1)n] .
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B-1082 Proposed by Ángel Plaza and Sergio Falcón, Universidad de Las Palmas
de Gran Canaria, Spain.

The k-Fibonacci numbers Fn = Fk,n satisfy Fk,n+2 = kFk,n+1+Fk,n, Fk,0 = 0, Fk,1 = 1. Let
m > 1 be a fixed integer. Prove that

∞
∑

r=1

(−1)r−1F2mr+m

F 2
mrF

2
mr+m

=
1

F 3
m

.

B-1083 Proposed by Br. J. M. Mahon, Kensington, Australia.

Find a closed form for

[n
2
]

∑

j=0

(−1)j
n

n− j

(

n− j

j

)

F2n−3j .

B-1084 Proposed by José Luis D́ıaz-Barrero, Barcelona, Spain.

Let n be a positive integer. Prove that




n
∑

k=1

F 2
k

√

1 + F 2
k





(

n
∏

k=1

(1 + F 2
k )

)1/2n

≤ FnFn+1.

B-1085 Proposed by Carsten Elsner and Martin Stein, University of Applied
Sciences, Hannover, Germany.

Let (an)n≥1 be a sequence of positive integers. Let q0 = 1, q1 = a1 and qn = anqn−1 + qn−2

for n ≥ 2. Prove that

q0 + q1 + · · ·+ qm−1

qm
≤ Fm+2 − 1

Fm+1

for m ≥ 1.
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SOLUTIONS

Sum of Products

B-1061 Proposed by H.-J. Seiffert, Berlin, Germany
(Vol. 48.1, February 2010)

Show that, for all positive integers n,

n
∑

k=1

(−1)b
k

2
c Fk

Fk+1





n
∏

j=k

Fj





2

= (−1)b
n−1

2
c Fn

Fn+1

where b·c denotes the greatest integer function.

Solution by Jay Hendel, Towson University, Towson, MD and Jaroslav Seibert,
University of Pardubice, The Czech Republic (independently).

We will prove the given formula by induction on n. Let S(n) denote the sum on the left

side of the equality. It is easy to see that S(1) = F1

F2
F 2
1 = 1. Suppose that the equality is true

for a positive integer n, and show that it is also true for n+ 1.

S(n+ 1) =

(

S(n) + (−1)b
n+1

2
cFn+1

Fn+2

)

F 2
n+1 =

(

(−1)b
n−1

2
c Fn

Fn+1
+ (−1)b

n+1

2
cFn+1

Fn+2

)

F 2
n+1

= (−1)b
n−1

2
cFn+1

Fn+2

(

FnFn+2

F 2
n+1

− 1

)

F 2
n+1 = (−1)b

n−1

2
cFn+1

Fn+2
(FnFn+2 − F 2

n+1)

= (−1)b
n−1

2
c(−1)n+1Fn+1

Fn+2

using Cassini’s identity ([1]; identity (29)).

If n is even then (−1)b
n−1

2
c(−1)n+1 = (−1)b

n+1

2
c = (−1)b

n

2
c and if n is odd then

(−1)b
n−1

2
c(−1)n+1 = (−1)b

n−1

2
c = (−1)b

n

2
c, which completes the proof.

References

[1] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section, Chichester, Ellis Horwood Ltd., 1989.

Also solved by Paul S. Bruckman, Sergio Falcón and Ángel Plaza (jointly), G. C.
Greubel, and the proposer.

Falcón and Plaza have a generalization of this inequality that will appear as a separate
proposal.

A Lot of Sums!

B-1062 Proposed by M. N. Deshpande, Nagpur, India
(Vol. 48.1, February 2010)

Let g(n) = F 2
n + F 2

n+1 + F 2
n+2 for n ≥ 0. For every n ≥ 2, show that

[4g(n + 2)− 7g(n + 1)− 9g(n)]/4 is a product of two consecutive Fibonacci numbers.
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Solution by Rebecca A. Hillman, University of South Carolina Sumter, Sumter,
SC 29150

Substituting g(n) into an expression and using the basic formula, Fn+2 = Fn+1 + Fn for
various values of n, it is seen that

1

4
[4g(n + 2)− 7g(n + 1)− 9g(n)] =

1

4
[4F 2

n+4 − 3F 2
n+3 − 12F 2

n+2 − 16F 2
n+1 − 9F 2

n ]

=
1

4
[4(3Fn+1 + 2Fn)

2 − 3(2Fn+1 + Fn)
2 − 12(Fn+1 + Fn)

2

− 16F 2
n+1 − 9F 2

n ]

=
1

4
[−4F 2

n+1 + 12Fn+1Fn − 8F 2
n ]

= −[F 2
n+1 − 3Fn+1Fn + 2F 2

n ]

= −(Fn+1 − 2Fn)(Fn+1 − Fn)

= Fn−2Fn−1.

Therefore, [4g(n+2)−7g(n+1)−9g(n)]/4 is the product of two consecutive Fibonacci numbers,
namely, Fn−2Fn− 1.

Also solved by Brian Beasley, Scott Brown, Paul S. Bruckman, Charles Cook,
Kenneth Davenport, Sergio Falcón and Ángel Plaza (jointly), G. C. Greubel, Jay
Hendel, Harris Kwong, Jaroslav Seibert, David Terr, and the proposer.

Another Sum and a Product

B-1063 Proposed by José Luis D́ıaz-Barrero, Universidad Politécnica de Cataluña,
Barcelona, Spain
(Vol. 48.1, February 2010)

Let n be a positive integer. Prove that

1 + 8

n
∑

k=1

F 2
2k

F 2
k + L2

k

<
4

3
(FnFn+1 + 1)(LnLn+2 − 1).

Solution by Ángel Plaza and Sergio Falcón (jointly), Department of Mathematics,
Universidad de Las Palmas de Gran Canaria, Spain

For n = 1,

1 + 8
F 2
2

F 2
1 + L2

1

<
4

3
(F1F2 + 1)(L1L3 − 1)

1 + 8
1

1 + 1
<

4

3
· 6

1 + 4 < 8.
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In the following we use that F2k = FkLk:

1 + 8

n
∑

k=1

F 2
2

F 2
k + L2

k

= 1 + 8

n
∑

k=1

F 2
kL

2
k

F 2
k + L2

k

< 1 + 8

n
∑

k=1

F 2
kL

2
k

2F 2
k

< 1 + 4

n
∑

k=1

L2
k = 1 + 4(LnLn+1 − 2)

= 1 + 4(LnLn+2 − L2
n − 2) < 4(LnLn+2 − 1).

Taking into account that for n > 1, 4 ≤ 4
3 (FnFn+1 + 1), the proof is done.

It should be noted that for n ≥ 2, the following stronger inequality holds.
For any integer n ≥ 2,

1 + 8

n
∑

k=1

F 2
2k

F 2
k + L2

k

< LnLn+2.

Also solved by Paul S. Bruckman, Jay Hendel, and the proposer.

Generalized Fibonacci Polynomials . . . Again!

B-1064 Proposed by N. Gauthier, Kingston, ON, Canada
(Vol. 48.1, February 2010)

For a 6= 0, let f0 = 0, f1 = 1, and fn+2 = afn+1 + fn for n ≥ 0. If n is a positive integer,
find a closed-form expression for

n−1
∑

k=0

f3
k .

Solution by Harris Kwong, SUNY Fredonia, Fredonia, NY

Let α = (a+
√
a2 + 4)/2, and β = (a−

√
a2 + 4)/2. The Binet’s form for fk is

fk =
αk − βk

α− β
.

Notice that α+ β = a, αβ = −1, and α− β =
√
a2 + 4. Hence,

n−1
∑

k=0

f3
k =

n−1
∑

k=0

(

αk − βk

α− β

)3

=
1

a2 + 4

n−1
∑

k=0

(αk − βk)3

α− β
.

From

(αk − βk)3 = α3k − 3(αβ)k(αk − βk)− β3k = α3k − β3k + 3[(−β)k − (−α)k],

we obtain

n−1
∑

k=0

(αk − βk)3 =
1− α3n

1− α3
− 1− β3n

1− β3
+ 3

[

1− (−β)n

1 + β
− 1− (−α)n

1 + α

]

.
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Since α3 + β3 = (α+ β)3 − 3αβ(α + β) = a3 + 3a, we find

1− α3n

1− α3
− 1− β3n

1− β3
=

(1− β3)(1− α3n)− (1− α3)(1 − β3n)

(1− α3)(1− β3)

=
α3 − β3 − (α3n − β3n) + (αβ)3(α3n−3 − β3n−3)

1− (α3 + β3) + (αβ)3

=
(α− β)(f3n + f3n−3 − f3)

a(a2 + 3)
,

and

1− (−β)n

1 + β3
− 1− (−α)n

1 + α
=

(1 + α)[1− (−β)n]− (1 + β)[(1 − (−α)n)]

(1 + α)(1 + β)

=
α− β + (−1)n[(αn − βn)− (αn−1 − βn−1)]

1 + (α+ β) + αβ

=
(α− β)[f1 + (−1)n(fn − fn−1)]

a
.

Therefore,

n−1
∑

k=0

f3
k =

1

a2 + 4

(

f3n + f3n−3 − f3
a(a2 + 3)

+
3[f1 + (−1)n(fn − fn−1)]

a

)

=
f3n + f3n−3 + 3(−1)n(a2 + 3)(fn − fn−1) + 2a2 + 8

a(a2 + 3)(a2 + 4)
.

Also solved by Paul S. Bruckman, Charles Cook, Sergio Falcón and Ángel Plaza
(jointly), G. C. Greubel, Jay Hendel, and the proposer.

A Sum of Pell Numbers

B-1065 Proposed by Br. J. Mahon, Australia
(Vol. 48.1, February 2010)

The Pell numbers Pn satisfy Pn+2 = 2Pn+1 + Pn, P0 = 0, P1 = 1. Prove that
∞
∑

r=1

(−1)r−1P6r+3

P 2
3rP

2
3r+3

=
1

125
.

Solution by Paul S. Bruckman, Nanaimo, BC, Canada

Given N natural, let T (N) =
∑N

r=1
(−1)r−1P6r+3

P 2
3r
P 2
3r+3

, and let T =
∑∞

r=1
(−1)r−1P6r+3

P 2
3r
P 2
3r+3

= limT (N)

as N → ∞, provided such limit exists. The Pell numbers satisfy the following relations for
n = 0, 1, 2, . . .,

Pn =
un − vn

u− v
, where u = 1 +

√
2, v = 1−

√
2; (1)

P 2
n + P 2

n+1 = P2n+1; (2)

P 2
3n + P 2

3n+3 = 5P6n+3; (3)
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1

P 2
n

∼ 8

u2n
→ 0 as n → ∞. (4)

Equations (1), (2), and (4) are well-known; (3) is derived similarly to (2) (by expanding the
Binet formulas) and using the fact that P3 = 5.

Then

T (N) =
N
∑

r=1

(−1)r−1{P 2
3r + P 2

3r+3}
5P 2

3rP
2
3r+3

=
1

5

N
∑

r=1

{

(−1)r−1

P 2
3r

− (−1)r

P 2
3r+3

}

,

a telescoping sum that is readily evaluated as

T (N) =
1

5P 2
3

− (−1)N

5P 2
3N+3

=
1

125
− (−1)N

5P 2
3N+3

. (5)

Using (4), we see that T does exist, with T = 1
125 .

Also solved by Sergio Falcón and Ángel Plaza (jointly), Kenneth Davenport,
Jaroslav Seibert, and the proposer.

A late solution to Problem B-1058 by Zbigniew Jakubczyk was received.
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