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Each problem and solution should be typed on separate sheets. Solutions to problems in this
issue must be received by May 15, 2011. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results”.

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1076 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Find the closed form expression for
n∏

k=1

(L2k+1 − L2k + 1).
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B-1077 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove the following identity:

F 4
n−2 + L4

n + F 4
n+2 = 9(F 4

n−1 + F 4
n + F 4

n+1).

B-1078 Proposed by José Luis Dı́az-Barrero and Miquel Grau-Sánchez, Poly-
technical University of Catalonia, Barcelona, Spain.

Let n be a nonnegative integer. Prove that

1

n+ 1

(
n∑

k=0

ln(1 + Fk)

)2

≤ FnFn+1.

B-1079 Proposed by Roman Witula, Silesian University of Technology, Poland.

Prove or disprove the following statement:

5n
(
F 2n
k−1 + F 2n

k+1

)
≡
{

2(−1)k−1 (mod Lk) if n is odd,
2 (mod Lk) if n is even.

B-1080 Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let n be a nonnegative integer. Prove that

F 3
n(2F

2
n + 5Fn+1Fn+2) + F 3

n+1(2F
2
n+1 + 5FnFn+2) = F 3

n+2(2F
2
n+2 − 5FnFn+1).

SOLUTIONS

Fibonacci, Lucas, and Pell Numbers Inequality

B-1056 Proposed by Charles K. Cook, Sumter, SC
(Vol. 46/47.4, November 2008/2009)

If n > 3, show that

F 3
n + L3

n + P 3
n + 3FnLnPn > 2(Fn + Ln)

2Pn

where Pn is the nth Pell number.
Solution by Russell J. Hendell, Towson University, Towson, MD

Equivalently, upon expansion of the square on the right hand side of the problem identity,
we must prove

F 3
n + L3

n + P 3
n > 2F 2

nPn + 2L2
nPn + LnFnPn.

Rearranging we equivalently must prove

Pn(P
2
n − FnLn) > F 2

n(2Pn − Fn) + L2
n(2Pn − Ln).
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Since the problem identity is true for n = 4, and since

F 2
n(2Pn − Fn) + L2

n(2Pn − Ln) < 2L2
n(2Pn − Ln) < 4L2

nPn,

it suffices to prove for n ≥ 5,

Pn(P
2
n − FnLn) > 4L2

nPn.

Upon rearrangement, proof of this last assertion is equivalent to the proof of(
Pn

Ln

)2

− Fn

Ln
> 4.

But by the Binet forms we have

Fn ∼ 1√
5
αn, Ln ∼ αn, Pn ∼

√
2

4
(1 +

√
2)n,

from which we infer that the left side of the last inequality is asymptotic to

O

(
1 +

√
2

α

)2n

−O(1) → ∞.

This completes the proof.

Also solved by Paul S. Bruckman and the proposer.

A Mod Power

B-1057 Proposed by Pat Costello, Eastern Kentucky University, Richmond, KY
(Vol. 46/47.4, November 2008/2009)

For n ≥ 1, prove that

2LnLn−1 ≡ (−1)[
n−1
3

]
(
5− (−1)((n+2)mod3)(mod2)

)
(mod 10)

where [x] is the greatest integer in x.

Solution by Paul S. Bruckman, Nanaimo, BC, Canada

Given a sequence {un} that is periodic, let k(un) denote the period of this sequence. We
assume that for all such sequences, n = 1, 2, . . ..

Next, we note that 2LnLn−1 = 2L2n−1 − 2(−1)n. The sequence {2L2n−1 (mod 10)} begins
with {2, 8, . . .}, with subsequent terms governed by the recurrence relation un+2 ≡ 3un+1−un
(mod 10). We then find that {2L2n−1 (mod 10)} = {2, 8, 2, 8, 2, 8, . . .}, or more briefly {2L2n−1

(mod 10)} = {2, 8}; note that k{2L2n−1 (mod 10)} = 2. Also, {2(−1)n} = {−2, 2,−2, 2, . . .},
hence {2(−1)n (mod 10)} = {8, 2}, also such that k{2(−1)n (mod 10)} = 2. Therefore,
k{2LnLn−1 (mod 10)} = 2, and

{2LnLn−1 (mod 10)} = {4, 6}. (1)

Now observe that {[(n − 1)/3]} = {0, 0, 0, 1, 1, 1, . . .} (a non-periodic sequence). Then

{(−1)[(n−1)/3]} = {1, 1, 1,−1,−1,−1, . . .}. We see that k{(−1)[(n−1)/3] (mod 10)} = 6, and

{(−1)[(n−1)/3] (mod 10)} = {1, 1, 1, 9, 9, 9}. (2)
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Likewise, we find that {n+2 (mod 3)} = {0, 1, 2, 0, 1, 2, . . .}, and {n+2 (mod 3) (mod 2)} =

{0, 1, 0}. Then {(−1)n+2 (mod 3) (mod 2)} = {1,−1, 1}. Also, {5 − (−1)n+2 (mod 3) (mod 2)} =
{4, 6, 4}, and so:

{5− (−1)n+2 (mod 3) (mod 2) (mod 10)} = {4, 6, 4}. (3)

Multiplying (2) and (3), we obtain k{(−1)[(n−1)/3](5− (−1)n+2 (mod 3) (mod 2)) (mod 10)} = 2,
with

{(−1)[(n−1)/3](5− (−1)n+2 (mod 3) (mod 2)) (mod 10)} = {4, 6}. (4)

Comparison of (1) and (4) yields the desired congruence relation.

Also solved by Russell J. Hendel and the proposer.

Two Identities for Quartic Fibonacci and Lucas Numbers

B-1058 Proposed by M. N. Despande, Nagpur, India
(Vol. 46/47.4, November 2008/2009)

Prove the following identities:

(1) 9(F 4
n+1 + F 4

n + F 4
n−1)− (F 4

n+2 + F 4
n−2) = L4

n;

(2) 9(L4
n+1 + L4

n + L4
n−1)− (L4

n+2 + L4
n−2) = 625F 4

n .

Solution by Ángel Plaza and Sergio Falcón, jointly, Universidad de Las Palmas de
Gran Canaria Las Palmas G. C., Spain

The identities may be proved by using Problem B-1044 (proposed by Paul S. Bruckman in
The Fibonacci Quarterly, 46/47.1, February 2008/2009)

L2
n = 2F 2

n+1 − F 2
n + 2F 2

n−1; (3)

25F 2
n = 2L2

n+1 − L2
n + 2L2

n−1. (4)

Taking squares in (3) and using that Fn+1 = Fn + Fn−1 it is obtained

L4
n = (2F 2

n+1 − F 2
n + 2Fn−1)

2 = F 4
n + 16F 4

n−1 + 32FnF
3
n−1 + 8F 3

nFn−1 + 24F 2
nF

2
n−1.

The same result is obtained from the left-hand side of (1), now also using that Fn−2 = Fn −
Fn−1.

The proof of (2) follows analogously from (4) using Ln+1 = Ln+Ln−1 and Ln−2 = Ln−Ln−1.

Also solved by Paul S. Bruckman, Charles K. Cook, G. C. Greubel, Russell J.
Hendel, Geroge A. Hisert, Yashwant Kumar Panwar, Jarslav Seibert (two solu-
tions), and the proposer.
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Linear Combinations of Squares of Fibonacci and Lucas Numbers

B-1059 Proposed by George A. Hisert, Berkeley, CA
(Vol. 46/47.4, November 2008/2009.)

For any positive integer r, find integers a, b, c and d such that

a(Ln)
2 = b(Fn+r)

2 + c(Fn)
2 + d(Fn−r)

2

and
25a(Fn)

2 = b(Ln+r)
2 + c(Ln)

2 + d(Ln−r)
2

for all positive integers n.

Solution by Jaroslav Seibert, Faculty of Economics and Administration, University
of Pardubice, The Czech Republic

Consider the generalized Fibonacci numbersGn defined by the recurrenceGn+2 = Gn+1+Gn

with arbitrary initial terms. We will find integers a, b, c, and d such that the equality

a(Gn−1 +Gn+1)
2 = bG2

n+r + cG2
n + dG2

n−r (1)

is valid for any positive integers r, n.
From identities (10a), (10b) in [1] it follows that

Gn =
1

Lr
(Gn+r + (−1)rGn−r)

and

Gn−1 +Gn+1 =
1

Fr
(Gn+r − (−1)rGn−r).

After substituting in (1), we obtain

a
1

F 2
r

(Gn+r − (−1)rGn−r)
2 = bG2

n+r + c
1

L2
r

(Gn+r + (−1)rGn−r)
2 + dG2

n−r,

which can be rewritten in the form(
b+

c

L2
r

− a

F 2
r

)
G2

n+r + 2(−1)r
(

c

L2
r

+
a

F 2
r

)
Gn+rGn−r +

(
d+

c

L2
r

− a

F 2
r

)
G2

n−r = 0.

This equality is valid if the three coefficients of the terms G2
n+r, Gn+rGn−r and G2

n−r are
equal to 0. This leads to the system

b+
c

L2
r

− a

F 2
r

= 0

c

L2
r

+
a

F 2
r

= 0

d+
c

L2
r

− a

F 2
r

= 0.

This system with unknowns a, b, c, d has infinitely many solutions. Choosing a as a

parameter, the remaining unknowns can be expressed as b = d = 2a
F 2
r
, C = −L2

r
F 2
r
a, and hence

the solution of the system is given by (a, b, c, d) = (a, 2a
F 2
r
,−L2

r
F 2
r
, 2a
F 2
r
).

As we want to find only integer solutions we can multiply every quadruple by F 2
r and

put a as an arbitrary integer. This way we obtain infinitely many quadruples (a, b, c, d) =
(F 2

r a, 2a,−L2
ra, 2a) which satisfies Equation (1) independently of n.
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Setting Gn = Fn we have the first given identity and setting Gn = Ln we get the second
one (using identities (5) and (6) in [1]).

References

[1] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section, Chichester, Ellis Horwood Ltd., 1989.

Also solved by Paul S. Bruckman, G. C. Greubel, Russell J. Hendel, and the
proposer.

A Putative Inequality!

B-1060 Proposed by José Luis Dı́az-Barrero and José Gibergans-Báguena, Uni-
versitat Politécnica de Cataluña, Barcelona, Spain
(Vol. 46/47.4, November 2008/2009)

Let n be a positive integer. Prove that

1 +
1

2

(
n∑

k=1

Fk3
1/Fk +

n∑
k=1

Lk

31/Lk

)
> F2n+2.

Solution by Paul S. Bruckman, Nanaimo, BC, Canada

Let S(n) = 1 + 1
2

∑n
k=1{Fk3

1/Fk + Lk3
−1/Lk}, n = 1, 2, . . .. The putative inequality

states that S(n) > F2n+2. However, it has been verified that this inequality is false for
n = 1, 2, . . . , 20. Based on the numerical evidence, it appears that the proposer intended the
following problem. Prove that

S(n) > Fn+3, for n = 2, 3, . . . . (1)

We will prove the restated problem as indicated in (1), assuming this to be the correct
formulation of the problem.

Note that S(1) = 1 + 1
2

(
3 + 1

3

)
= 8

3 ≈ 2.667, while F4 = 3, which shows that (1) does not
hold for n = 1. Let T denote the set of natural numbers n such that the inequality indicated
in (1) holds. Now S(2) = S(1) + 1

2

(
3 + 32/3

)
≈ 2.667 ≈ +2.540 ≈ 5.207 > 5 = F5. We then

see that 2 ∈ T .
We note that lim 31/Fn = lim3−1/Ln = 1 as n → ∞. Also note that 31/Fn approaches 1

from values greater than 1, while 3−1/Ln approaches 1 from values less than 1.
Before we proceed, we consider the functions x(31/x − 1) and x(1 − 3−1/x). Make the

substitution x = 1/y; then y is thought of as “small” as x grows large. Then x(31/x−1) = 3y−1
y .

This is an increasing function of y, whose limit as y → 0+ is log 3 ≈ 1.0986. Thus, x(31/x − 1)
is a decreasing function of x; moreover, this function approaches log 3 from above, as x → ∞.

Thus, Fn+1(3
1

Fn+1 − 1) > log 3.

Also, x(1−3−1/x) = 1−3−y

y . This is a decreasing function of y, whose limit as y → 0+ is also

log 3 ≈ 1.0986. This is therefore an increasing function of x that approaches its limit of log 3
from below, as x → ∞. Then we have Ln+1(1− 3−1/Ln+1) < log 3 < Fn+1(3

1/Fn+1 − 1) for all

n ≥ 1. Clearly, the difference function Fn+1(3
1/Fn+1 − 1)−Ln+1(1− 3−1/Ln+1) is a decreasing
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function of n; also, its limit as n → ∞ is equal to zero, and it assumes only positive values.
We are now prepared to proceed with an inductive proof of (1).

Suppose n ∈ T for some n ≥ 2. That is, our inductive hypothesis is that (1) holds for some
n ≥ 2.

Then

S(n+ 1) = S(n) +
1

2
{Fn+13

1/Fn+1 + Ln+13
−1/Ln+1}

=
1

2
{Fn+1 + Ln+1}+

1

2
{Fn+1(3

1/Fn+1 − 1)− Ln+1(1− 3−1/Ln+1)}.

Now, 1
2{Fn+1+Ln+1} = Fn+2. Also as we previously showed, 1

2{Fn+1(3
1/Fn+1 −1)−Ln+1(1−

3−1/Ln+1)} > 0. That is S(n+1) = S(n)+ 1
2{Fn+1+Ln+1}+δn, (where δn is small and positive).

Then S(n+1) = S(n)+Fn+2+ δn > Fn+3+Fn+2 = Fn+4. Thus, n ∈ T ⇒ (n+1) ∈ T . Since
2 ∈ T , the proof by induction is complete.

Also solved by the proposer.
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