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Each problem and solution should be typed on separate sheets. Solutions to problems in this
issue must be received by February 15, 2017. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results”.

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1191 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

For nonnegative integers m and n, prove that
n
∑

k=0

(−1)k
(

n

k

)

Lmk

Lk
m

=
Lmn

Ln
m

.
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B-1192 Proposed by T. Goy, Vasyl Stefanyk Precarpathian National University,
Ivano-Frankivsk, Ukraine.

Let Mn be an n× n matrix given for all n ≥ 1 by

Mn =



















F1 1 0 . . . 0 0 0
F2 F1 1 . . . 0 0 0
F3 F2 F1 . . . 0 0 0

. . . . . . . . .
. . . . . . . . . . . .

Fn−1 Fn−2 Fn−3 . . . F2 F1 1
Fn Fn−1 Fn−2 . . . F3 F2 F1



















.

Prove that

det(Mn) =

{

0, if n is even,

1, if n is odd.

B-1193 Proposed by José Luis D́ıaz-Barrero, Barcelona Tech, Barcelona, Spain.

If F 2
1 , F

2
2 , . . . , F

2
n are the square of the first n Fibonacci numbers, then find real numbers

a1, a2, . . . , an satisfying ak > F 2
k , 1 ≤ k ≤ n, and

1

FnFn+1

n
∑

k=1

ak <
α2

α− 1
.

B-1194 Proposed by D. M. Bătineţu–Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.

Prove that

L1

(L2
1 + L2

2 + 2)m+1
+

L2

(L2
1 + L2

2 + L2
3 + 2)m+1

+ · · ·+ Ln

(L2
1 + L2

2 + · · ·+ L2
n+1 + 2)m+1

≥ (Ln+2 − 1)m+1

Lm+1
n+2 (Ln+2 − 3)m

for any positive integers n and m.

B-1195 Proposed by Jeremiah Bartz, Francis Marion University, Florence, SC.

Let Gi denote the generalized Fibonacci sequence given by G1 = a, G2 = b, and Gi =
Gi−1 +Gi−2 for i ≥ 3. Let m ≥ 1 and k ≥ 0. Prove that the area A of the polygon with n ≥ 3
vertices

(Gm, Gm+k), (Gm+2k , Gm+3k), . . . , (Gm+(2n−2)k , Gm+(2n−1)k)

is
|µ|Fk(F2k(n−1) − (n− 1)F2k)

2
where µ = a2 + ab− b2.
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SOLUTIONS

All is One!

B-1171 Proposed by José Luis D́ıaz-Barrero, Barcelona Tech, Barcelona, Spain.
(Vol. 53.3, August 2015)

For all integers n ≥ 1, compute

(Fn−1 + Fn+1)
3 + (2Fn + Fn+3)

3 + (5Fn + Fn+3)
3 + (9Fn + Fn+3)

3

8F 3
n+1 + F 3

n+3 + (7Fn + Fn+3)3 + (8Fn + Fn+3)3
.

Solution by Brian D. Beasley, Presbyterian College, Clinton, SC.

For each integer n ≥ 1, we have Fn+3 = 2Fn+1 + Fn and Fn−1 = Fn+1 − Fn. Let x = Fn

and y = Fn+1. The the numerator of the given fraction is

(−x+ 2y)3 + (3x+ 2y)3 + (6x+ 2y)3 + (10x+ 2y)3 = 1242x3 + 876x2y + 216xy2 + 32y3

and the denominator is

8y3 + (x+ 2y)3 + (8x+ 2y)3 + (9x+ 2y)3 = 1242x3 + 876x2y + 216xy2 + 32y3.

Hence, the given fraction equals 1.

All received solutions were similar to the above. Also solved by Brian Bradie,
Kenneth B. Davenport, Dmitry Fleischman, G. C. Greubel, Wei-Kai Lai, Hideyuki
Ohtsuka, Ángel Plaza, Nicuşor Zlota, and the proposer.

Area of Triangles with Generalized Fibonacci Number Coordinates

B-1172 Proposed by Steve Edwards, Kennesaw State University, Marietta, GA.
(Vol. 53.3, August 2015)

Show that the area of the triangle whose vertices have coordinates (Fn, Fn+k), (Fn+2k, Fn+3k),
(Fn+4k, Fn+5k) is

5F 4
kLk

2
if k is even and

F 2
kL

3
k

2
if k is odd.

Also, find the area of the triangle whose vertices have coordinates (Ln, Ln+k), (Ln+2k, Ln+3k),
(Ln+4k, Ln+5k).

Solution by Virginia P. Johnson, Columbia College, Columbia, South Carolina.

Consider the triangle with vertices given by Fibonacci numbers as follows: (Fn, Fn+k),
(Fn+2k, Fn+3k), and (Fn+4k, Fn+5k). The (signed) area of this triangle can be calculated using
the determinant formula from vector calculus:

A =
1

2

∣

∣

∣

∣

Fn+2k − Fn Fn+3k − Fn+k

Fn+4k − Fn Fn+5k − Fn+k

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

Fn+2k − Fn Fn+3k − Fn+k

Fn+4k − Fn+2k Fn+5k − Fn+3k

∣

∣

∣

∣

.
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Note that all entries in the determinant are of the form Fm+2k − Fm. It will be more
convenient to find this determinant for the general case first. Let a, b, r be real numbers with
r 6= 0. Define a real valued function on the integers by

f(n) = arn + b
(−1)n+1

rn
.

This is the general solution to the recursion

f(n) = pf(n− 1) + f(n− 2)

where p and r are related by

p = r − 1

r

that is r2 − pr − 1 = 0. For any real value of p, this has real solutions so that the method
works for any recursion of this form.

Then for the general case, the signed area can be determined using

A =
1

2

∣

∣

∣

∣

f(n+ 2k)− f(n) f(n+ 3k) − f(n+ k)
f(n+ 4k)− f(n+ 2k) f(n+ 5k)− f(n+ 3k)

∣

∣

∣

∣

.

All entries in the determinant are of the form f(m+ 2k)− f(m).

f(m+ 2k)− f(m) = arm+2k + b
(−1)m+2k+1

rm+2k
−

(

arm + b
(−1)m+1

rm

)

= arm(r2k − 1) + (−1)m+1b

(

1

rm+2k
− 1

rm

)

= arm(r2k − 1) + (−1)mb

(

r2k − 1

rm+2k

)

= (r2k − 1)

(

arm + b
(−1)m

rm+2k

)

= (r2k − 1)

(

ar2m+2k + (−1)mb

rm+2k

)

.

Each entry of the matrix will have a factor of (r2k − 1) which we can factor out of the two
rows. The area for the general case is therefore

A =
(r2k − 1)2

2

∣

∣

∣

∣

∣

ar2n+2k+(−1)nb
rn+2k

ar2n+4k+(−1)n+kb
rn+3k

ar2n+6k+(−1)nb
rn+4k

ar2n+8k+(−1)n+kb
rn+5k

∣

∣

∣

∣

∣

.

To clear the fractions we factor 1
rn+3k out of the first row and 1

rn+5k of the second row.

A =
(r2k − 1)2

2rn+3krn+5k

∣

∣

∣

∣

ar2n+3k + (−1)nbrk ar2n+4k + (−1)n+kb
ar2n+7k + (−1)nbrk ar2n+8k + (−1)n+kb

∣

∣

∣

∣

=
ab(−1)n

2

(

rk − 1

rk

)3 (

rk +
1

rk

)(

rk +
(−1)k+1

rk

)

.

If a = b = 1√
5
, and r = 1+

√
5

2 , then f(n) reduces to the Fibonacci numbers, that is f(n) = Fn.

To get the Lucas numbers let a = 1, b = −1, and r = 1+
√
5

2
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k is even ⇒







a
(

rk − 1
rk

)

= a
(

rk + (−1)k+1

rk

)

= Fk,
(

rk + 1
rk

)

=
(

rk + (−1)(−1)k+1

rk

)

= Lk,

and

k is odd ⇒







a
(

rk + 1
rk

)

= a
(

rk + −1(−1)k+1

rk

)

= Fk,
(

rk − 1
rk

)

=
(

rk + −1(−1)k+1

rk

)

= Lk.

Fibonacci Numbers: Then a = b = 1√
5
. We can now calculate the signed area for a trian-

gle with vertices given by Fibonacci numbers (Fn, Fn+k), (Fn+2k, Fn+3k), and (Fn+4k, Fn+5k).
If k is even, the signed area of the triangle will be

A =
ab

2

(

rk − 1

rk

)4(

rk +
1

rk

)

=
a4

2a2

(

rk − 1

rk

)4 (

rk +
1

rk

)

=
5

2
F 4
kLk.

If k is odd, the signed area of the triangle will be

A =
a2

2

(

rk − 1

rk

)3 (

rk +
1

rk

)2

=
F 2
kL

3
k

2
.

Lucas Numbers: Similarly, if a triangle with vertices given by Lucas numbers, (Ln, Ln+k),
(Ln+2k, Ln+3k), and (Ln+4k, Ln+5k) and using that in this case a = 1, b = −1, the signed area
will be as follows.

If k is even:

A =
ab

2

(

rk − 1

rk

)4 (

rk +
1

rk

)

=
−a4

2a4

(

rk +
(−1)k+1

rk

)4(

rk +
1

rk

)

.

The absolute value gives the area as 25
2 F

4
kLk.

If k is odd:

A =
ab

2

(

rk − 1

rk

)3 (

rk +
1

rk

)2

=
−a2

2a2

(

rk +
1

rk

)2 (

rk − 1

rk

)3

.

The absolute value gives the area as
5F 2

k
L3
k

2 .
Using appropriate value for a, b, and r, it is possible to calculate the area for triangles when

Generalized Fibonacci Numbers, Pell Numbers, or Pell-Lucas Numbers are used as described
for the vertices.

The featured solution, though not the shortest, was selected for its generalized
treatment of the problem. Also solved by Jeremiah Bartz, Charles K. Cook, Ravi
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Kumar Davala, G. C. Greubel, Harris Kwong, Ángel Plaza, and the proposer. A
nameless solution was received.

By Induction

B-1173 Proposed by D. M. Bătineţu–Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.
(Vol. 53.3, August 2015)

(i) Prove that

F1

(F 2
1 + F 2

2 )
m+1

+
F2

(F 2
1 + F 2

2 + F 2
3 )

m+1
+ · · · + Fn

(F 2
1 + F 2

2 + · · ·+ F 2
n+1)

m+1
≥ 1

Fm
n+2

− 1

Fm+1
n+2

for any positive integer n and any positive real number m.

(ii) (Corrected) Prove that

L1

(L2
1 + L2

2 + 2)2
+

L2

(L2
1 + L2

2 + L2
3 + 2)2

+· · ·+ Ln

(L2
1 + L2

2 + · · ·+ L2
n+1 + 2)2

≥ Ln+2 − 3

L2
n+2(Ln+2 − 1)2

for any positive integer n.

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

We use
∑n

k=1 F
2
k = FnFn+1 and

∑n
k=1L

2
k = LnLn+1 − 2.

(i) The LHS is
F1

(F2F3)m+1
+

F2

(F3F4)m+1
+ · · · + Fn

(Fn+1Fn+2)m+1

while the RHS is
Fn+2 − 1

Fm+1
n+2

=

∑n
k=1 Fk

Fm+1
n+2

.

We prove that

F1

(F2F3)m+1
+

F2

(F3F4)m+1
+ · · ·+ Fn

(Fn+1Fn+2)m+1
≥ Fn+2 − 1

Fm+1
n+2

.

This may be done by induction.
For n = 1 the inequality becomes

F1

(F2F3)m+1
≥ F3 − 1

Fm+1
3

,

that is 1
2m+1 ≥ 1

2m+1 , which is true. Let us suppose the inequality holds for n > 1. Then for
n+ 1, by induction hypothesis we have

F1

(F2F3)m+1
+ · · · + Fn

(Fn+1Fn+2)m+1
+

Fn+1

(Fn+2Fn+3)m+1
≥ Fn+2 − 1

Fm+1
n+2

+
Fn+1

(Fn+2Fn+3)m+1
.

It is enough to see that

Fn+2 − 1

Fm+1
n+2

+
Fn+1

(Fn+2Fn+3)m+1
≥ Fn+3 − 1

Fm+1
n+3

Fm+1
n+3 (Fn+2 − 1) + Fn+1 ≥ Fm+1

n+2 (Fn+3 − 1)

276 VOLUME 54, NUMBER 3



ELEMENTARY PROBLEMS AND SOLUTIONS

which is true, since there is an identity for m = 0.

(ii) The RHS of this inequality should be Ln+2−3
L2
n+2

(Ln+2−1)2
as it will be shown below.

The LHS is
L1

(L2L3)2
+

L2

(L3L4)2
+ · · ·+ Ln

(Ln+1Ln+2)2
,

so we have to prove that

L1

(L2L3)2
+

L2

(L3L4)2
+ · · ·+ Ln

(Ln+1Ln+2)2
≥ Ln+2 − 3

L2
n+2(Ln+2 − 1)2

,

and this may be done by induction.
For n = 1 the inequality becomes

L1

(L2L3)2
≥ L3 − 3

L2
3(L3 − 1)2

,

that is 1
122 ≥ 1

4232 , which is true. Let us suppose the inequality holds for n > 1. Then for
n+ 1, by induction hypothesis we have

L1

(L2L3)2
+ · · ·+ Ln

(Ln+1Ln+2)2
+

Ln+1

(Ln+2Ln+3)2
≥ Ln+2 − 3

L2
n+2(Ln+2 − 1)2

+
Ln+1

(Ln+2Ln+3)2
,

so it is enough to see that

Ln+2 − 3

L2
n+2(Ln+2 − 1)2

+
Ln+1

(Ln+2Ln+3)2
≥ Ln+3 − 3

L2
n+3(Ln+3 − 1)2

:

Ln+2 − 3

L2
n+2(Ln+2 − 1)2

+
Ln+1

(Ln+2Ln+3)2
≥ Ln+2 − 3

L2
n+3(Ln+3 − 1)2

+
Ln+1

(Ln+3 − 1)2L2
n+3

=
Ln+3 − 3

L2
n+3(Ln+3 − 1)2

.

Also solved by Kenneth B. Davenport and the proposer.

A Summation of Recipricals

B-1174 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 53.3, August 2015)

Prove that
∞
∑

n=3

(−1)n

F 4
n − 1

= − 1

18
.

Solution by Steve Edwards, Kennesaw State University, Marietta, GA.

Using the identities F 4
n − 1 = Fn−2Fn−1Fn+1Fn+2 and Fn+2Fn−2 − Fn−1Fn+2 = 2(−1)n+1

(see [1]), we have
∞
∑

n=3

(−1)n

F 4
n − 1

=
∞
∑

n=3

(−1)n

Fn−2Fn−1Fn+1Fn+2
= −1

2

∞
∑

n=3

Fn+2Fn−2 − Fn+1Fn−1

Fn−2Fn−1Fn+1Fn+2

= −1

2

∞
∑

n=3

[

1

Fn−1Fn+1
− 1

Fn−2Fn+2

]

.
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According to Problem B-9 of The Fibonacci Quarterly,
∞
∑

n=3

1

Fn−1Fn+1
=

1

2
.

Using the identity Fn+2Fn−3 − Fn+1Fn−2 = 3(−1)n, [1] we have

∞
∑

n=3

1

Fn−2Fn+2
=

1

3

∞
∑

n=3

(−1)n
Fn+2Fn−3 − Fn+1Fn−2

Fn−2Fn+2

=
1

3

∞
∑

n=3

(−1)n
[

Fn−3

Fn−2
− Fn+1

Fn+2

]

.

This last series is telescoping with the nth partial sum

−F0

F1
+

F1

F2
− F2

F3
+

F3

F4
− Fn−1

Fn
+

Fn

Fn+1
− Fn+1

Fn+2
+

Fn+2

Fn+3
.

Since limn→m
Fn+1

Fn
= α, this last series converges to 1 − 1

2 + 2
3 = 7

6 , so the original series
converges to

−1

2

(

1

2
− 1

3
· 7
6

)

= − 1

18
.
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Based on the AM-GM or PM Inequality

B-1175 Proposed by D. M. Bătineţu–Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.
(Vol. 53.3, August 2015)

Let m ≥ 0 and n ∈ N. Prove that
(√

F2n+1 − Fn+1

)m
+
(√

F2n+1 + Fn+1

)m ≥ 2Fm
n .

All solvers submitted more or less the same solution as the following one.

Since F2n+1 = F 2
n + F 2

n+1, [1, (11)] the conclusion follows by the AM-GM inequality. In
fact,

(√

F 2
n + F 2

n+1 − Fn+1

)m

+
(√

F 2
n + F 2

n+1 + Fn+1

)m

2

≥
√

(

√

F 2
n + F 2

n+1 − Fn+1

)m(

√

F 2
n + F 2

n+1 + Fn+1

)m

= (F 2
n + F 2

n+1 − F 2
n+1)

m/2

= Fm
n .
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