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Each problem and solution should be typed on separate sheets. Solutions to problems in this
issue must be received by August 15, 2016. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results”.

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1181 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that
∞
∑

n=1

F2n

(F 2
n + 1)2

=
5

3
.
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B-1182 Proposed by José Luis D́ıaz-Barrero, Barcelona Tech, Barcelona, Spain.

Let n be a positive integer. If a, b, c are the roots of the equation x3 − Fnx
2 + Fn+1 = 0,

then prove that

a3(Fn − a) + b3(Fn − b) + c3(Fn − c)

is a positive integer which is the sum of n squares.

B-1183 Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain.

Express
∞
∑

n=k

(

n

k

)

2

Ln+1 +
√
5Fn+1

as a function of Fk+1 and Lk+1.

B-1184 Proposed by D. M. Bătineţu–Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade Secondary
School, Buzău, Romania.

Let k be a positive integer.

(1) If A(k) =

(

Fk+1 Fk

Fk Fk+1

)

, compute
n
∏

k=1

A(k).

(2) If B(k) =

(

F 2
k F 2

k+1

F 2
k+1

F 2
k

)

, compute

n
∏

k=1

B(k).

(3) If C(k) =

(

Fk Fk+1

Fk+1 Fk

)(

Lk Lk+1

Lk+1 Lk

)

, compute

n
∏

k=1

C(k).

B-1185 Proposed by D. M. Bătineţu–Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade Secondary
School, Buzău, Romania.

Let a and b be positive real numbers such that aFn+1 > bFn. Prove that

n
∑

k=1

F 2
k

aFnFn+1 − bF 2
k

≥ n

an− b

for all n ≥ 1.
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SOLUTIONS

Powered Index Series and Inverse Tangent of an Inverse Series

B-1161 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 53.1, February 2015)

Prove each of the following:

(i)
∞
∑

k=1

2kL2k

F 2

2k

= 10,

(ii)
∞
∑

k=0

tan−1

(

1√
5F2k+1

)

=
π

4
.

Solution by Zbigniew Jakubczyk, Warsaw, Poland.

(i) We will make use of the identities F2n = FnLn and L2n = L2
n − 2(−1)n. If k is an

integer greater than 2, then

2kL2k

F 2

2k

=
2k(L2

2k−1 − 2)

F 2

2k

=
2kL2

2k−1 − 2k+1

F 2

2k

=
2kL2

2k−1

F 2

2k−1L
2

2k−1

− 2k+1

F 2

2k

=
2k

F 2

2k−1

− 2k+1

F 2

2k

.

So,

∞
∑

k=1

2kL2k

F 2

2k

= lim
n→∞

(

2L2

F 2
2

+
n
∑

k=2

(

2k

F 2

2k−1

− 2k+1

F 2

2k

))

= lim
n→∞

(

2L2

F 2
2

+
22

F 2
1

− 2n+1

F 2
2n

)

= 10.

(ii) Making use of the results Fk = αk−βk
√
5

, αβ = −1, α + β = 1, tan−1 y−x
1+xy

= tan−1 y −
tan−1 x, and limn→∞ βn = 0, we get

∞
∑

k=0

tan−1

(

1√
5F2k+1

)

= lim
n→∞

n
∑

k=0

tan−1

(

1

α2k+1 − β2k+1

)

= lim
n→∞

n
∑

k=0

tan−1

(

1

− 1

β2k+1

− β2k+1

)

= lim
n→∞

n
∑

k=0

tan−1

( −β2k+1

1 + β4k+2

)

= lim
n→∞

n
∑

k=0

tan−1

(

( 1
β
− β)β2k+1

1 + β4k+2

)

= lim
n→∞

n
∑

k=0

tan−1 β2k − β2k+2

1 + β2kβ2k+2

= lim
n→∞

n
∑

k=0

(tan−1(β2k)− tan−1(β2k+2))

= lim
n→∞

(tan−1(β0)− tan−1(β2n+2)) =
π

4
.
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Also solved by Brian Bradie, Kenneth B. Davenport, Russell Jay Hendel, Harris
Kwong, Ángel Plaza, Dan Weiner, part (i) only, and the proposer.

Based on Binomial Coefficients and Cauchy-Schwartz

B-1162 Proposed by José Luis D́ıaz-Barrero, Barcelona Tech, Barcelona, Spain.
(Vol. 53.1, February 2015)

Let n be a positive integer. Show that

n
∑

k=1

√

(

n− 1

k − 1

)

Fk

k
≤
√

F2n.

Solution by Brian Bradie, Department of Mathematics, Christopher Newport
University, Newport News, VA.

First note that
1

k

(

n− 1

k − 1

)

=
1

n

(

n

k

)

,

so that
n
∑

k=1

√

(

n− 1

k − 1

)

Fk

k
=

1√
n

n
∑

k=1

√

(

n

k

)

Fk. (1)

Now, by Jensen’s inequality,

n
∑

k=1

√

(

n

k

)

Fk ≤ n ·

√

√

√

√

1

n

n
∑

k=1

(

n

k

)

Fk =
√
n ·

√

√

√

√

n
∑

k=1

(

n

k

)

Fk. (2)

Moreover,
n
∑

k=1

(

n

k

)

Fk = F2n (3)

(see Identity 6 on page 6 of [1]). Finally, combining (1), (2), and (3) yields

n
∑

k=1

√

(

n− 1

k − 1

)

Fk

k
≤
√

F2n.

References

[1] A. Benjamin and J. Quinn, Proofs that Really Count, The Mathematical Association of America, Washing-
ton, D. C., 2003.

Also solved by Kenneth B. Davenport, Russell Jay Hendel, Zbigniew Jakubczyk,
Harris Kwong, Hideyuki Ohtsuka, Ángel Plaza, Nicuşor Zlota, and the proposer.
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Two Partial Sums Involving k-Fibonacci and k-Lucas Sequences
and One Lower Bound

B-1163 Proposed by Ángel Plaza and Sergio Falcón, Universidad de Las Palmas
de Gran Canaria, Spain.
(Vol. 53.1, February 2015)

For any positive integer k, the k-Fibonacci and k-Lucas sequences, {Fk,n}n∈N and {Lk,n}n∈N,
both are defined recursively by un+1 = kun + un−1 for n ≥ 1 with respective initial values
Fk,0 = 0, Fk,1 = 1, and Lk,0 = 2, Lk,1 = k. For any integer n ≥ 2, prove that

(i)

n
∑

j=1

(

kFk,j

Fk,n+1 + Fk,n − 1− kFk,j

)2

≥ n

(n − 1)2
,

(ii)
n
∑

j=1

(

kLk,j

Lk,n+1 + Lk,n − 2− k − kLk,j

)2

≥ n

(n− 1)2
.

Solution by Harris Kwong, SUNY Fredonia, Fredonia, NY.

It can be proved by induction that
∑n

j=1
kFk,j = Fk,n+1 + Fk,n − 1, and

∑n
j=1

kLk, j =

Lk,n+1 + Lk,n − 2− k. Thus, both (i) and (ii) take the form of
n
∑

j=1

(

xj
S − xj

)2

≥ n

(n − 1)2
,

where {xj}nj=1
is a non-decreasing sequence of positive integers, and S =

∑n
j=1

xj. Taking

note that the sequence { 1

S−xj
}nj=1 is also non-decreasing, we deduce from Chebyshev and

Cauchy-Schwartz inequalities that

n
∑

j=1

(

xj
S − xj

)2

≥ 1

n





n
∑

j=1

x2j









n
∑

j=1

1

(S − xj)2



 ≥ 1

n3





n
∑

j=1

xj





2



n
∑

j=1

1

S − xj





2

.

It is obvious that (
∑n

j=1
xj)

2 = S2. Since the harmonic mean of a finite number of positive
real numbers is less than or equal to their arithmetic mean, we find

1
1

n

∑n
j=1

1

S−xj

≤ 1

n

n
∑

j=1

(S − xj) =
(n− 1)S

n
.

Hence,
n
∑

j=1

1

S − xj
≥ n2

(n− 1)S
,

from which the desired result follows.

Also solved by D. M. Bătineţu–Giurgiu and Neculai Stanciu (jointly), and the
proposer.
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The Values of Two Alternating Series

B-1164 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 53.1, February 2015)

Determine each of the following:

(i)

∞
∑

n=0

(−1)n

L2FnL2Fn+3

,

(ii)

∞
∑

n=0

(−1)n

L2LnL2Ln+3

.

Solution by Harris Kwong, SUNY Fredonia, Fredonia, NY.

Using the identity LsLt = Ls+t + (−1)sLt−s, we find

L2Fn+1
L2Fn+2

= L2Fn+3
+ L2Fn ,

from which we deduce the identity

1

L2FnL2Fn+3

=
L2Fn+3

+ L2Fn

L2FnL2Fn+1
L2Fn+2

L2Fn+3

=
1

L2FnL2Fn+1
L2Fn+2

+
1

L2Fn+1
L2Fn+2

L2Fn+3

.

Its alternating sum is telescopic. Consequently,

m
∑

n=0

(−1)n

L2FnL2Fn+3

=
1

L2F0
L2F1

L2F2

+
(−1)m

L2Fm+1
L2Fm+2

L2Fm+3

,

and
∞
∑

n=0

(−1)n

L2FnL2Fn+3

= lim
m→∞

(

1

L2F0
L2F1

L2F2

+
(−1)m

L2Fm+1
L2Fm+2

L2Fm+3

)

=
1

L2F0
L2F1

L2F2

=
1

18
.

In a similar manner, we obtain

∞
∑

n=0

(−1)n

L2LnL2Ln+3

= lim
m→∞

(

1

L2L0
L2L1

L2L2

+
(−1)m

L2Lm+1
L2Lm+2

L2Lm+3

)

=
1

L2L0
L2L1

L2L2

=
1

378
.

Also solved by Brian Bradie, Kenneth B. Davenport, and the proposer.

Fibonacci Indices

B-1165 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 53.1, February 2015)

For an integer n ≥ 0, find the value of

LF3n

FF3n−1
FF3n−2

+
LF3n−1

FF3n−2
FF3n

+
LF3n−2

FF3n
FF3n−1

.

Solution by John M. Adams, Charleston, SC.
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The original expression is equivalent to

LF3n
FF3n

+ LF3n−1
FF3n−1

+ LF3n−2
FF3n−2

FF3n
FF3n−1

FF3n−2

. (1)

Using the Lucas formula and Binet’s formula for the numerator, we can see that

LF3n
FF3n

=
(

αF3n + βF3n
)

(

αF3n − βF3n

√
5

)

,

LF3n−1
FF3n−1

=
(

αF3n−1 + βF3n−1
)

(

αF3n−1 − βF3n−1

√
5

)

,

LF3n−2
FF3n−2

=
(

αF3n−2 + βF3n−2
)

(

αF3n−2 − βF3n−2

√
5

)

.

Multiplying the expressions and using the distributive property, we obtain
(

1√
5

)

(α2F3n − β2F3n + α2F3n−1 − β2F3n−1 + α2F3n−2 − β2F3n−2). (2)

Using Binet’s formula for the numerator, we see that

FF3n
FF3n−1

FF3n−2
=

(

αF3n − βF3n

√
5

)(

αF3n−1 − βF3n−1

√
5

)(

αF3n−2 − βF3n−2

√
5

)

.

Multiplying, simplifying, reordering, and factoring, we obtain
(

1

5
√
5

)

(α2F3n − β2F3n + (αβ)F3n−2(−α2F3n−1 + β2F3n−1) + (αβ)F3n−1(−α2F3n−2 + β2F3n−2)).

Since αβ = −1 and F3n−2 and F3n−1 are both odd for any integer n, (αβ)F3n−1 = (αβ)F3n−2 =
−1. Thus, the denominator is equivalent to

(

1

5
√
5

)

(α2F3n − β2F3n + α2F3n−1 − β2F3n−1 + α2F3n−2 − β2F3n−2). (3)

Replacing (2) and (3) as the numerator and denominator in (1), we have
(

1√
5

)

(α2F3n − β2F3n + α2F3n−1 − β2F3n−1 + α2F3n−2 − β2F3n−2)
(

1

5
√
5

)

(α2F3n − β2F3n + α2F3n−1 − β2F3n−1 + α2F3n−2 − β2F3n−2)
= 5.

Therefore,
LF3n

FF3n−1
FF3n−2

+
LF3n−1

FF3n−2
FF3n

+
LF3n−2

FF3n
FF3n−1

= 5.

Also solved by Brian Bradie, Kenneth B. Davenport, Harris Kwong, Wei-Kai Lai,
Ángel Plaza and Francisco Perdomo (jointly), and the proposer.

The solver to Problem B-1156 was Albert Stadler. We apologize for the inadvertant mis-
spelling of his name.
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