ELEMENTARY PROBLEMS AND SOLUTIONS

EDITED BY
HARRIS KWONG

Please submit solutions and problem proposals to Dr. Harris Kwong, Department of Mathematical Sciences, SUNY Fredonia, Fredonia, NY, 14063, or by email at kwong@fredonia.edu. If you wish to have receipt of your submission acknowledged by mail, please include a selfaddressed, stamped envelope.

Each problem or solution should be typed on separate sheets. Solutions to problems in this issue must be received by August 15, 2018. If a problem is not original, the proposer should inform the Problem Editor of the history of the problem. A problem should not be submitted elsewhere while it is under consideration for publication in this Journal. Solvers are asked to include references rather than quoting "well-known results."

The content of the problem sections of The Fibonacci Quarterly are all available on the web free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy

$$
\begin{aligned}
& F_{n+2}=F_{n+1}+F_{n}, \quad F_{0}=0, F_{1}=1 ; \\
& L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1 .
\end{aligned}
$$

Also, $\alpha=(1+\sqrt{5}) / 2, \beta=(1-\sqrt{5}) / 2, F_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}$, and $L_{n}=\alpha^{n}+\beta^{n}$.

PROBLEMS PROPOSED IN THIS ISSUE

B-1221 Proposed by José Luis Díaz-Barrero, Technical University of Catalonia (Barcelona Tech), Barcelona, Spain.

For any positive integer n, show that

$$
\frac{1}{54 F_{2 n}}\left|\begin{array}{ccc}
4 & F_{n} & L_{n} \\
F_{n} & \left(F_{n+1}+L_{n}\right)^{2} & F_{2 n} \\
L_{n} & F_{2 n} & F_{n+2}^{2}
\end{array}\right|
$$

is a perfect square, and find its value.

B-1222 Proposed by Kenny B. Davenport, Dallas, PA.

Let H_{n} denote the nth harmonic number. Prove that

$$
\sum_{n=2}^{\infty} \frac{H_{n-1} F_{n}}{n 2^{n}}=\frac{\ln 16 \cdot \ln \alpha}{\sqrt{5}}, \quad \text { and } \quad \sum_{n=2}^{\infty} \frac{H_{n-1} L_{n}}{n 2^{n}}=(\ln 2)^{2}+4(\ln \alpha)^{2} .
$$

B-1223 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.

For all positive integers n and a, prove that

$$
\sum_{k=1}^{n} F_{k}\left(F_{k+1}^{a}+F_{k+2}^{a}-F_{n+2}^{a}-1\right) \leq 0
$$

B-1224 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

For any positive integer n, prove that

$$
\sum_{k=1}^{n}\binom{n}{k} \frac{F_{k}}{k}=\sum_{k=1}^{n} \frac{F_{2 k}}{k}, \quad \text { and } \quad \sum_{k=1}^{n}\binom{n}{k} \frac{L_{k}}{k}=\sum_{k=1}^{n} \frac{L_{2 k}-2}{k}
$$

B-1225 Proposed by Jathan Austin, Salisbury University, Salisbury, MD.

Construct a sequence $\left\{M_{n}\right\}_{n=1}^{\infty}$ of 3×3 matrices with positive entries that satisfy the following conditions:
(A) $\left|M_{n}\right|$ is the product of nonzero Fibonacci numbers.
(B) The determinant of any 2×2 submatrix of M_{n} is a Fibonacci number or the product of nonzero Fibonacci numbers.
(C) $\lim _{n \rightarrow \infty}\left|M_{n+1}\right| /\left|M_{n}\right|=1+2 \alpha$.

SOLUTIONS

Cauchy-Schwarz or Bergström Again!

B-1201 Proposed by Ivan V. Fedak, Vasyl Stefanyc Precarpathian National University, Ivano-Frankivsk, Ukraine.
(Vol. 55.1, February 2017)
If $a, b, c>0$, then prove that, for any positive integer n,

$$
\begin{gathered}
\frac{a^{3}}{a F_{n}+b F_{n+1}}+\frac{b^{3}}{b F_{n}+a F_{n+1}} \geq \frac{a^{2}+b^{2}}{F_{n+2}}, \\
\frac{a^{3}}{a L_{n}+b L_{n+1}}+\frac{b^{3}}{b L_{n}+a L_{n+1}} \geq \frac{a^{2}+b^{2}}{L_{n+2}}, \\
\frac{a^{3}}{a F_{n}+b F_{n+1}+c F_{n+2}}+\frac{b^{3}}{b F_{n}+c F_{n+1}+a F_{n+2}}+\frac{c^{3}}{c F_{n}+a F_{n+1}+b F_{n+2}} \geq \frac{a^{2}+b^{2}+c^{2}}{2 F_{n+2}}, \\
\frac{a^{3}}{a L_{n}+b L_{n+1}+c L_{n+2}}+\frac{b^{3}}{b L_{n}+c L_{n+1}+a L_{n+2}}+\frac{c^{3}}{c L_{n}+a L_{n+1}+b L_{n+2}} \geq \frac{a^{2}+b^{2}+c^{2}}{2 L_{n+2}} .
\end{gathered}
$$

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.
Let a, b, c, x, y, z be positive real numbers. By the Cauchy-Schwarz inequality,

$$
\frac{a^{3}}{a x+b y}+\frac{b^{3}}{b x+c z}=\frac{a^{4}}{a^{2} x+a b y}+\frac{b^{4}}{b^{2} x+a b y} \geq \frac{\left(a^{2}+b^{2}\right)^{2}}{\left(a^{2}+b^{2}\right) x+2 a b y} .
$$

Now, by the arithmetic mean - geometric mean inequality, $2 a b \leq a^{2}+b^{2}$, so

$$
\begin{equation*}
\frac{a^{3}}{a x+b y}+\frac{b^{3}}{b x+c z} \geq \frac{\left(a^{2}+b^{2}\right)^{2}}{\left(a^{2}+b^{2}\right) x+\left(a^{2}+b^{2}\right) y}=\frac{a^{2}+b^{2}}{x+y} . \tag{1}
\end{equation*}
$$

With $x=F_{n}$ and $y=F_{n+1},(1)$ becomes

$$
\frac{a^{3}}{a F_{n}+b F_{n+1}}+\frac{b^{3}}{b F_{n}+a F_{n+1}} \geq \frac{a^{2}+b^{2}}{F_{n}+F_{n+1}}=\frac{a^{2}+b^{2}}{F_{n+2}} .
$$

With $x=L_{n}$ and $y=L_{n+1}$, (1) becomes

$$
\frac{a^{3}}{a L_{n}+b L_{n+1}}+\frac{b^{3}}{b L_{n}+a L_{n+1}} \geq \frac{a^{2}+b^{2}}{L_{n}+L_{n+1}}=\frac{a^{2}+b^{2}}{L_{n+2}} .
$$

Next, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
& \frac{a^{3}}{a x+b y+c z}+\frac{b^{3}}{b x+c y+a z}+\frac{c^{3}}{c x+a y+b z} \\
& =\frac{a^{4}}{a^{2} x+a b y+c a z}+\frac{b^{4}}{b^{2} x+b c y+a b z}+\frac{c^{4}}{c^{2} x+c a y+b c z} \\
& \geq \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{\left(a^{2}+b^{2}+c^{2}\right) x+(a b+b c+c a)(y+z)} .
\end{aligned}
$$

Now, the inequality $(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \geq 0$ is equivalent to

$$
a b+b c+c a \leq a^{2}+b^{2}+c^{2}
$$

so

$$
\begin{align*}
& \frac{a^{3}}{a x+b y+c z}+\frac{b^{3}}{b x+c y+a z}+\frac{c^{3}}{c x+a y+b z} \\
& \geq \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{\left(a^{2}+b^{2}+c^{2}\right) x+\left(a^{2}+b^{2}+c^{2}\right)(y+z)}=\frac{a^{2}+b^{2}+c^{2}}{x+y+z} . \tag{2}
\end{align*}
$$

With $x=F_{n}, y=F_{n+1}$, and $z=F_{n+2}$, (2) becomes

$$
\begin{aligned}
& \frac{a^{3}}{a F_{n}+b F_{n+1}+c F_{n+2}}+\frac{b^{3}}{b F_{n}+c F_{n+1}+a F_{n+2}}+\frac{c^{3}}{c F_{n}+a F_{n+1}+b F_{n+2}} \\
& \geq \frac{a^{2}+b^{2}+c^{2}}{F_{n}+F_{n+1}+F_{n+2}}=\frac{a^{2}+b^{2}+c^{2}}{2 F_{n+2}} .
\end{aligned}
$$

With $x=L_{n}, y=L_{n+1}$, and $z=L_{n+2}$, (2) becomes

$$
\begin{aligned}
& \frac{a^{3}}{a L_{n}+b L_{n+1}+c L_{n+2}}+\frac{b^{3}}{b L_{n}+c L_{n+1}+a L_{n+2}}+\frac{c^{3}}{c L_{n}+a L_{n+1}+b L_{n+2}} \\
& \geq \frac{a^{2}+b^{2}+c^{2}}{L_{n}+L_{n+1}+L_{n+2}}=\frac{a^{2}+b^{2}+c^{2}}{2 L_{n+2}} .
\end{aligned}
$$

Editor's Note: Ricardo used Bergström inequality to derive (1) and (2).
Also solved by Dmitry Fleischman, Hideyuki Ohtsuka, Ángel Plaza, Henry Ri-
cardo, Nicuşor Zlota, and the proposer.

Root and Ratio Tests

B-1202 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College, Bucharest, Romania; Neculai Stanciu, George Emil Palade School, Buzău, Romaina; and Gabriel Tica, Mihai Viteazul National College, Băileşti, Dolj, Romania.

(Vol. 55.1, February 2017)

Let $\left(a_{n}\right)_{n \geq 1}$ be a positive real sequence such that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n^{2} a_{n}}=a$. Evaluate

$$
\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{\frac{a_{n+1} F_{n+1}}{(n+1)!}}-\sqrt[n]{\frac{a_{n} F_{n}}{n!}}\right) \quad \text { and } \lim _{n \rightarrow \infty}\left(\sqrt[n+1]{\frac{a_{n+1} L_{n+1}}{(n+1)!}}-\sqrt[n]{\frac{a_{n} L_{n}}{n!}}\right)
$$

Solution by the proposers.

We claim that both limits equal to $a \alpha / e$. Given an infinite sequence $\left(b_{n}\right)_{n \geq 1}$, it is known that if $\lim _{n \rightarrow \infty}\left|b_{n+1} / b_{n}\right|=L$, then $\lim _{n \rightarrow \infty} \sqrt[n]{\left|b_{n}\right|}=L$. Apply this to $c_{n}=a_{n} F_{n} /\left(n!n^{n}\right)$. We find

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=\lim _{n \rightarrow \infty} \frac{a_{n+1} F_{n+1}}{(n+1)!(n+1)^{n+1}} \cdot \frac{n!n^{n}}{a_{n} F_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n^{2} a_{n}} \cdot \frac{F_{n+1}}{F_{n}}\left(\frac{n}{n+1}\right)^{n+2}=\frac{a \alpha}{e} .
$$

Thus, $\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}}=a \alpha / e$ as well. Define

$$
u_{n}=\sqrt[n+1]{\frac{a_{n+1} F_{n+1}}{(n+1)!}} \cdot \sqrt[n]{\frac{n!}{a_{n} F_{n}}}=\frac{\sqrt[n+1]{c_{n+1}}}{\sqrt[n]{c_{n}}} \cdot \frac{n+1}{n}
$$

such that

$$
\sqrt[n+1]{\frac{a_{n+1} F_{n+1}}{(n+1)!}}-\sqrt[n]{\frac{a_{n} F_{n}}{n!}}=\sqrt[n]{\frac{a_{n} F_{n}}{n!}}\left(u_{n}-1\right)=\sqrt[n]{c_{n}} \cdot n\left(u_{n}-1\right) .
$$

It suffices to show that $\lim _{n \rightarrow \infty} n\left(u_{n}-1\right)=1$. Note that $\lim _{n \rightarrow \infty} u_{n}=1$, and

$$
\lim _{n \rightarrow \infty} u_{n}^{n}=\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}} \cdot \frac{1}{\sqrt[n+1]{c_{n+1}}}\left(\frac{n+1}{n}\right)^{n}=e
$$

Therefore,

$$
\lim _{n \rightarrow \infty} n\left(u_{n}-1\right)=\lim _{n \rightarrow \infty} \frac{u_{n}-1}{\ln u_{n}} \cdot \ln u_{n}^{n}=1 \cdot \ln e=1 .
$$

The proof of the other limit is similar, and is omitted here.

Editor's Note: Plaza noted that the inequalities follow from a result obtained by the first two proposers in [1], and Ohtsuka used a result from [2] to derive the inequalities directly.

References

[1] D. M. Bătineţu-Giurgiu and N. Stanciu, New methods for calculations of some limits, The Teaching of Mathematics, 16(2) (2013), 82-88.
[2] Gh. Toader, Lalescu sequences, Publikacije Elektrotechničkog fakulteta Univerziteta u Beogradu, Serija Matematika i fizika, 9 (1998), 19-28.

Also solved by I. V. Fedak, Dmitry Fleishcman, Hamza Mahmood (student), Soumitra Mandal, Hideyuki Ohtsuka, Ángel Plaza, and Raphael Schumacher (student).

Fibonacci Numbers with Fibonacci Numbers as Subscripts

B-1203 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

(Vol. 55.1, February 2017)
Prove that, for any positive integer n,
(i) $\sum_{k=1}^{n} F_{F_{3 k}} F_{F_{3 k-1}} F_{F_{3 k-2}}=\frac{1}{5} \sum_{k=1}^{3 n} F_{2 F_{k}}$;
(ii) $\sum_{k=1}^{n} L_{L_{3 k}} L_{L_{3 k-1}} L_{L_{3 k-2}}=2 n+\sum_{k=1}^{3 n}(-1)^{L_{k}} L_{2 L_{k}}$.

Solution by Jaroslav Seibert, University of Pardubice, Czech Republic.

Using the Binet's formula for the Fibonacci numbers, we find

$$
\begin{aligned}
F_{F_{3 k}} F_{F_{3 k-1}} F_{F_{3 k-2}}= & \left(\frac{\alpha^{F_{3 k}}-\beta^{F_{3 k}}}{\sqrt{5}}\right)\left(\frac{\alpha^{F_{3 k-1}}-\beta^{F_{3 k-1}}}{\sqrt{5}}\right)\left(\frac{\alpha^{F_{3 k-2}}-\beta^{F_{3 k-2}}}{\sqrt{5}}\right) \\
= & \frac{1}{5 \sqrt{5}}\left[\alpha^{2 F_{3 k}}-(\alpha \beta)^{F_{3 k-2}} \alpha^{2 F_{3 k-1}}-(\alpha \beta)^{F_{3 k-1}} \alpha^{2 F_{3 k-2}}-(\alpha \beta)^{F_{3 k}}\right. \\
& \left.\quad+(\alpha \beta)^{F_{3 k}}+(\alpha \beta)^{F_{3 k-1}} \beta^{2 F_{3 k-2}}+(\alpha \beta)^{F_{3 k-2}} \beta^{2 F_{3 k-1}}-\beta^{2 F_{3 k}}\right] .
\end{aligned}
$$

Since $\alpha \beta=-1$, and $F_{3 k-1}$ and $F_{3 k-2}$ are both odd for any integer k, we have $(\alpha \beta)^{F_{3 k-1}}=$ $(\alpha \beta)^{F_{3 k-2}}=-1$. Thus,

$$
\begin{aligned}
F_{F_{3 k}} F_{F_{3 k-1}} F_{F_{3 k-2}} & =\frac{1}{5}\left(\frac{\alpha^{2 F_{3 k}}-\beta^{2 F_{3 k}}}{\sqrt{5}}+\frac{\alpha^{2 F_{3 k-1}}-\beta^{2 F_{3 k-1}}}{\sqrt{5}}+\frac{\alpha^{2 F_{3 k-2}}-\beta^{2 F_{3 k-2}}}{\sqrt{5}}\right) \\
& =\frac{1}{5}\left(F_{2 F_{3 k}}+F_{2 F_{3 k-1}}+F_{2 F_{3 k-2}}\right) .
\end{aligned}
$$

Finally,

$$
\sum_{k=1}^{n} F_{F_{3 k}} F_{F_{3 k-1}} F_{F_{3 k-2}}=\frac{1}{5} \sum_{k=1}^{n}\left(F_{2 F_{3 k}}+F_{2 F_{3 k-1}}+F_{2 F_{3 k-2}}\right)=\frac{1}{5} \sum_{k=1}^{3 n} F_{2 F_{k}},
$$

which proves (i).

THE FIBONACCI QUARTERLY

The proof of (ii) proceeds in a similar manner. Using the Binet's formula for the Lucas numbers, we find

$$
\begin{aligned}
L_{L_{3 k}} L_{L_{3 k-1}} L_{L_{3 k-2}}= & \left(\alpha^{L_{3 k}}+\beta^{L_{3 k}}\right)\left(\alpha^{L_{3 k-1}}+\beta^{L_{3 k-1}}\right)\left(\alpha^{L_{3 k-2}}+\beta^{L_{3 k-2}}\right) \\
= & \alpha^{2 L_{3 k}}+(\alpha \beta)^{L_{3 k-2}} \alpha^{2 L_{3 k-1}}+(\alpha \beta)^{L_{3 k-1}} \alpha^{2 L_{3 k-2}}+(\alpha \beta)^{L_{3 k}} \\
& \quad+(\alpha \beta)^{L_{3 k}}+(\alpha \beta)^{L_{3 k-1}} \beta^{2 L_{3 k-2}}+(\alpha \beta)^{L_{3 k-2}} \beta^{2 L_{3 k-1}}+\beta^{2 L_{3 k}} .
\end{aligned}
$$

It is known that $L_{3 k-1}$ and $L_{3 k-2}$ are both odd, and $L_{3 k}$ is even for any integer k. Hence, $(\alpha \beta)^{L_{3 k-1}}=(\alpha \beta)^{L_{3 k-2}}=-1$, and $(\alpha \beta)^{L_{3 k}}=1$. Thus,

$$
\begin{aligned}
L_{L_{3 k}} L_{L_{3 k-1}} L_{L_{3 k-2}} & =\left(\alpha^{2 L_{3 k}}+\beta^{2 L_{3 k}}\right)-\left(\alpha^{2 L_{3 k-1}}+\beta^{2 L_{3 k-1}}\right)-\left(\alpha^{2 L_{3 k-2}}+\beta^{2 L_{3 k-2}}\right)+2 \\
& =L_{2 L_{3 k}}-L_{2 L_{3 k-1}}-L_{2 L_{3 k-2}}+2 \\
& =(-1)^{L_{3 k}} L_{2 L_{3 k}}+(-1)^{L_{3 k-1}} L_{2 L_{3 k-1}}+(-1)^{L_{3 k-2} L_{2 L_{3 k-2}}+2,}
\end{aligned}
$$

which proves that

$$
\sum_{k=1}^{n} L_{L_{3 k}} L_{L_{3 k-1}} L_{L_{3 k-2}}=2 n+\sum_{k=1}^{3 n}(-1)^{L_{k}} L_{2 L_{k}} .
$$

Editor's Note: Plaza quoted the general formulas for the products $F_{x_{1}} F_{x_{2}} F_{x_{3}}$ and $L_{x_{1}} L_{x_{2}} L_{x_{3}}$ in [2], and Davenport applied the following symmetric identities from [1]:

$$
\begin{aligned}
5 F_{x} F_{y} F_{z} & =F_{x+y+z}-(-1)^{x} F_{-x+y+z}-(-1)^{y} F_{x-y+z}-(-1)^{z} F_{x+y-z}, \\
L_{x} L_{y} L_{z} & =L_{x+y+z}+(-1)^{x} L_{-x+y+z}+(-1)^{y} L_{x-y+z}+(-1)^{z} L_{x+y-z} .
\end{aligned}
$$

References

[1] P. S. Bruckman, Solution to Problem B-890, The Fibonacci Quarterly, 38.5 (2000), 469-470.
[2] H. H. Ferns, Products of Fibonacci and Lucas numbers, The Fibonacci Quarterly, 7.1 (1969), 1-13.
Also solved by Brian Bradie, Kenny B. Davenport, I. V. Fedak, Dmitry Fleischman, Ángel Plaza, Raphael Schumacher (student), and the proposer.

A Double Binomial Sum

B-1204 Proposed by Steve Edwards, Kennesaw State University, Marietta, GA. (Vol. 55.1, February 2017)

For non-negative integers n, express

$$
A_{n}=\sum_{j=0}^{n} \frac{1}{2^{2 j}} \sum_{i=0}^{n+j}\binom{n+j-i}{n-j}\binom{n+j}{i} \quad \text { and } \quad B_{n}=\sum_{j=0}^{n-1} \frac{1}{2^{2 j+1}} \sum_{i=0}^{n+j}\binom{n+j-i}{n-j-1}\binom{n+j}{i}
$$

in terms of Fibonacci numbers.

Solution by Hideyuki Ohtsuka, Saitama, Japan.

We use the well-known identity

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n-k}{k}=F_{n+1} .
$$

We have

$$
\begin{aligned}
A_{n} & =\sum_{j=0}^{n} \frac{1}{2^{2 j}} \sum_{i=0}^{n+j} \frac{(n+j-i)!}{(n-j)!(2 j-i)!} \cdot \frac{(n+j)!}{i!(n+j-i)!} \\
& =\sum_{j=0}^{n} \frac{1}{2^{2 j}} \sum_{i=0}^{n+j} \frac{(n+j)!}{(n-j)!(2 j)!} \cdot \frac{(2 j)!}{i!(2 j-i)!} \\
& =\sum_{j=0}^{n} \frac{1}{2^{2 j}}\binom{n+j}{n-j} \sum_{i=0}^{n+j}\binom{2 j}{i}=\sum_{j=0}^{n} \frac{1}{2^{2 j}}\binom{n+j}{n-j} \sum_{i=0}^{2 j}\binom{2 j}{i} \\
& =\sum_{j=0}^{n} \frac{1}{2^{2 j}}\binom{n+j}{n-j} \cdot 2^{2 j}=\sum_{k=0}^{n}\binom{2 n-k}{k}=F_{2 n+1},
\end{aligned}
$$

and

$$
\begin{aligned}
B_{n} & =\sum_{j=0}^{n-1} \frac{1}{2^{2 j+1}} \sum_{i=0}^{n+j} \frac{(n+j-i)!}{(n-j-1)!(2 j-i+1)!} \cdot \frac{(n+j)!}{i!(n+j-i)!} \\
& =\sum_{j=0}^{n-1} \frac{1}{2^{2 j+1}} \sum_{i=0}^{n+j} \frac{(n+j)!}{(n-j-1)!(2 j+1)!} \cdot \frac{(2 j+1)!}{i!(2 j-i+1)!} \\
& =\sum_{j=0}^{n-1} \frac{1}{2^{2 j+1}}\binom{n+j}{n-j-1} \sum_{i=0}^{n+j}\binom{2 j+1}{i} \\
& =\sum_{j=0}^{n-1} \frac{1}{2^{2 j+1}}\binom{n+j}{n-j-1} \sum_{i=0}^{2 j+1}\binom{2 j+1}{i} \\
& =\sum_{j=0}^{n-1} \frac{1}{2^{2 j+1}}\binom{n+j}{n-j-1} \cdot 2^{2 j+1}=\sum_{k=0}^{n-1}\binom{2 n-1-k}{k}=F_{2 n} .
\end{aligned}
$$

Also solved by Brian Bradie, I. V. Fadek, Dmitry Fleischman, Jaroslav Seibert, and the proposer.

Power-Mean and Jensen's Inequalities

B-1205 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College, Bucharest, Romania; and Neculai Stanciu, George Emil Palade School, Buzău, Romania.
(Vol. 55.1, February 2017)
Prove that

$$
n^{m-1} \sum_{k=1}^{n} F_{k}^{2 m} \geq F_{n}^{m} F_{n+1}^{m}
$$

for any positive integers n and m.

THE FIBONACCI QUARTERLY

Solution 1 by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

It is enough to apply the power-mean arithmetic mean inequality to the sequence $\left(F_{k}^{2}\right)_{1 \leq k \leq n}$, as follows:

$$
\sqrt[m]{\frac{1}{n} \sum_{k=1}^{n} F_{k}^{2 m}} \geq \frac{1}{n} \sum_{k=1}^{n} F_{k}^{2}=\frac{F_{n} F_{n+1}}{n} .
$$

It follows that

$$
n^{m-1} \sum_{k=1}^{n} F_{k}^{2 m} \geq F_{n}^{m} F_{n+1}^{m} .
$$

Solution 2 by Henry Ricardo, New York Math Circle, Purchase, NY.
Noting that, for any positive integer m, the function $f(x)=x^{m}$ is convex on the interval $(0, \infty)$, and that $\sum_{k=1}^{n} F_{k}^{2}=F_{n} F_{n+1}$, we use Jensen's inequality to conclude that

$$
\frac{1}{n} \sum_{k=1}^{n} f\left(F_{k}^{2}\right) \geq f\left(\frac{1}{n} \sum_{k=1}^{n} F_{k}^{2}\right)
$$

or

$$
n^{m-1} \sum_{k=1}^{n} F_{k}^{2 m} \geq\left(F_{n} F_{n+1}\right)^{m}=F_{n}^{m} F_{n+1}^{m} .
$$

Also solved by Maria Aristizabal (student), Brian Bradie, Kenny B. Davenport, I. V. Fedak, Dmitry Fleischman, Wei-Kai Lai, Soumitra Mandal, Hideyuki Ohtsuka, Nicuşor Zlota, and the proposer.

