ELEMENTARY PROBLEMS AND SOLUTIONS

EDITED BY
HARRIS KWONG

Please submit solutions and problem proposals to Dr. Harris Kwong, Department of Mathematical Sciences, SUNY Fredonia, Fredonia, NY, 14063, or by email at kwong@fredonia.edu. If you wish to have receipt of your submission acknowledged by mail, please include a selfaddressed, stamped envelope.

Each problem or solution should be typed on separate sheets. Solutions to problems in this issue must be received by May 15, 2019. If a problem is not original, the proposer should inform the Problem Editor of the history of the problem. A problem should not be submitted elsewhere while it is under consideration for publication in this Journal. Solvers are asked to include references rather than quoting "well-known results."

The content of the problem sections of The Fibonacci Quarterly are all available on the web free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy

$$
\begin{aligned}
& F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1 ; \\
& L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1 .
\end{aligned}
$$

Also, $\alpha=(1+\sqrt{5}) / 2, \beta=(1-\sqrt{5}) / 2, F_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}$, and $L_{n}=\alpha^{n}+\beta^{n}$.

PROBLEMS PROPOSED IN THIS ISSUE

B-1236 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College, Bucharest, Romania, and Neculai Stanciu, George Emil Palade School, Buzău, Romania.

Prove that, for any integers $m \geq 0$ and $n>1$,

$$
\sum_{k=1}^{n+1} \frac{\binom{n}{k-1}^{m+1}}{F_{k}^{2 m}}>\frac{2^{n(m+1)}}{F_{n+1}^{m} F_{n+2}^{m}}, \quad \text { and } \quad \sum_{k=1}^{n+1} \frac{F_{k}^{m+1}}{\binom{n}{k-1}^{m}}>\frac{\left(F_{n+3}-1\right)^{m+1}}{2^{m n}}
$$

B-1237 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Evaluate

$$
\prod_{k=1}^{\infty}\left(1+\frac{1}{\alpha^{k}+\alpha}\right), \quad \text { and } \quad \prod_{k=1}^{\infty}\left(1-\frac{1}{\alpha^{k}+\alpha}\right)
$$

B-1238 Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Let $a>1$ and consider the sequence of real numbers defined recursively by $x_{0}=0, x_{1}=1$, and

$$
x_{n+1}=\left(a+\frac{1}{a}\right) x_{n}-x_{n-1}, \quad n \geq 1 .
$$

Prove that $\sum_{n=0}^{\infty} \frac{1}{x_{2^{n}}}$ is a rational number if and only if a is a rational number.

B-1239 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.

For all integers n, prove that

$$
\left(\frac{1}{L_{n}}-\frac{1}{L_{n+1}}\right)^{4}+\left(\frac{1}{L_{n+1}}+\frac{1}{L_{n+2}}\right)^{4}+\left(\frac{1}{L_{n+2}}+\frac{1}{L_{n}}\right)^{4}=2\left(\frac{1}{L_{n}}+\frac{1}{L_{n+1}}-\frac{1}{L_{n+2}}\right)^{4} .
$$

B-1240 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College, Bucharest, Romania, and Neculai Stanciu, George Emil Palade School, Buzău, Romania.

Assume $x_{k}>0$ for $k=1,2, \ldots, n$. Prove that, for any positive integers $m \geq 1$ and $n>1$,

$$
\begin{aligned}
& \left(\sum_{k=1}^{n} \frac{1}{x_{k}}\right)\left(\sum_{\substack{i=1 \\
\text { cyclic }}}^{n} \frac{x_{i} x_{i+1}}{F_{m} x_{i}+F_{m+1} x_{i+1}}\right) \geq \frac{n^{2}}{F_{m+2}}, \\
& \left(\sum_{k=1}^{n} \frac{1}{x_{k}}\right)\left(\sum_{\substack{i=1 \\
\text { cyclic }}}^{n} \frac{x_{i} x_{i+1}}{L_{m} x_{i}+L_{m+1} x_{i+1}}\right) \geq \frac{n^{2}}{L_{m+2}} .
\end{aligned}
$$

SOLUTIONS

Editor's Notes. In the solution to Elementary Problem B-1208 that appeared in the May issue, the first round of row reductions should be carried out according to $k=n+1, n, \ldots, 3$. The two rounds of row reductions can be combined into one. For $k=n+1, n, \ldots, 3$, subtract the sum of row $k-1$ and row $k-2$ from row k. Next, subtracting the first row from the second yields the last augmented matrix shown in the solution.

Another Application of the AM-GM Inequality

B-1216 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College, Bucharest, Romania, and Neculai Stanciu, George Emil Palade School, Buzău, Romania.
(Vol. 55.4, November 2017)

THE FIBONACCI QUARTERLY

Prove that, for any positive real number m, and any positive integer n,

$$
F_{n}^{m} F_{n+1}^{m} \sum_{k=1}^{n} \frac{L_{k}^{m+1}}{F_{k}^{2 m}} \geq n^{m+1}\left(\prod_{k=1}^{n} L_{k}\right)^{\frac{m+1}{n}} .
$$

Solution 1 by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

The proposed inequality follows from the AM-GM inequality and the identity $F_{n} F_{n+1}=$ $\sum_{k=1}^{n} F_{k}^{2}$:

$$
\begin{aligned}
F_{n}^{m} F_{n+1}^{m} \sum_{k=1}^{m} \frac{L_{k}^{m+1}}{F_{k}^{2 m}} & \geq F_{n}^{m} F_{n+1}^{n} \cdot n \sqrt[n]{\prod_{k=1}^{n} \frac{L_{k}^{m+1}}{F_{k}^{2 m}}} \\
& =\left(\frac{F_{n} F_{n+1}}{\sqrt[n]{\prod_{k=1}^{n} F_{k}^{2}}}\right)^{m} \cdot n\left(\prod_{k=1}^{n} L_{k}\right)^{\frac{m+1}{n}} \\
& =\left(\frac{\sum_{k=1}^{n} F_{k}^{2}}{\sqrt[n]{\prod_{k=1}^{n} F_{k}^{2}}}\right)^{m} \cdot n\left(\prod_{k=1}^{n} L_{k}\right)^{\frac{m+1}{n}} \\
& \geq\left(\frac{n \sqrt[n]{\prod_{k=1}^{n} F_{k}^{2}}}{\sqrt[n]{\prod_{k=1}^{n} F_{k}^{2}}}\right)^{m} \cdot n\left(\prod_{k=1}^{n} L_{k}\right)^{\frac{m+1}{n}} \\
& =n^{m+1}\left(\prod_{k=1}^{n} L_{k}\right)^{\frac{m+1}{n}}
\end{aligned}
$$

Solution 2 by Wei-Kai Lai and John Risher (student) (jointly), University of South Carolina Salkehatchie, Walterboro, SC.

According to Radon's Inequality, we know that

$$
\sum_{k=1}^{n} \frac{L_{k}^{m+1}}{F_{k}^{2 m}} \geq \frac{\left(\sum_{k=1}^{n} L_{k}\right)^{m+1}}{\left(\sum_{k=1}^{n} F_{k}^{2}\right)^{m}} .
$$

To prove the claimed inequality, we therefore only need to prove that

$$
F_{n}^{m} F_{n+1}^{m} \frac{\left(\sum_{k=1}^{n} L_{k}\right)^{m+1}}{\left(\sum_{k=1}^{n} F_{k}^{2}\right)^{m}} \geq n^{m+1}\left(\prod_{k=1}^{n} L_{k}\right)^{\frac{m+1}{n}} .
$$

Since $\sum_{k=1}^{n} F_{k}^{2}=F_{n} F_{n+1}$, the above inequality is equivalent to

$$
\left(\sum_{k=1}^{n} L_{k}\right)^{m+1} \geq n^{m+1}\left(\prod_{k=1}^{n} L_{k}\right)^{\frac{m+1}{n}}
$$

which is apparently true due to the AM-GM inequality.

Also solved by Brian Bradie, Kenny B. Davenport, I. V. Fedak, Dmitry Fleischman, Hideyuki Ohtsuka, and the proposers.

Help From Exponential Generating Function

B-1217 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

(Vol. 55.4, November 2017)
Let $M_{k_{i}}=2^{(i-1) k_{i}} L_{k_{i}}$. For integers $r \geq 1$ and $n \geq 0$, find a closed form expression for the sum

$$
S_{n}=\sum_{\substack{0 \leq k, k_{1}, \ldots, k_{r} \leq n \\ k+k_{1}+\cdots+k_{r}=n}} \frac{F_{k} M_{k_{1}} M_{k_{2}} \cdots M_{k_{r}}}{k!k_{1}!k_{2}!\cdots k_{r}!} .
$$

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.

The exponential generating function for the Fibonacci numbers is

$$
G_{F}(x)=\sum_{k=0}^{\infty} \frac{F_{k}}{k!} x^{k}=\frac{1}{\sqrt{5}}\left(e^{\alpha x}-e^{\beta x}\right),
$$

whereas the exponential generating function for the Lucas numbers is

$$
G_{L}(x)=\sum_{k=0}^{\infty} \frac{L_{k}}{k!} x^{k}=e^{\alpha x}+e^{\beta x} .
$$

It follows that the exponential generating function for $M_{k_{i}}$ is

$$
G_{i}(x)=\sum_{k_{i}=0}^{\infty} \frac{M_{k_{i}}}{k_{i}!} x^{k_{i}}=\sum_{k_{i}=0}^{\infty} \frac{L_{k_{i}}}{k_{i}!}\left(2^{i-1} x\right)^{k_{i}}=G_{L}\left(2^{i-1} x\right)=e^{2^{i-1} \alpha x}+e^{2^{i-1} \beta x}
$$

Due to convolution, we can now recognize S_{n} as the coefficient of x^{n} in the product

$$
\begin{aligned}
& G_{F}(x) G_{1}(x) G_{2}(x) \cdots G_{r}(x) \\
& =\frac{1}{\sqrt{5}}\left(e^{\alpha x}-e^{\beta x}\right)\left(e^{\alpha x}+e^{\beta x}\right)\left(e^{2 \alpha x}+e^{2 \beta x}\right) \cdots\left(e^{2^{r-1} \alpha x}+e^{2^{r-1} \beta x}\right) \\
& =\frac{1}{\sqrt{5}}\left(e^{2 \alpha x}-e^{2 \beta x}\right)\left(e^{2 \alpha x}+e^{2 \beta x}\right) \cdots\left(e^{2^{r-1} \alpha x}+e^{2^{r-1} \beta x}\right) \\
& =\frac{1}{\sqrt{5}}\left(e^{4 \alpha x}-e^{4 \beta x}\right) \cdots\left(e^{2^{r-1} \alpha x}+e^{2^{r-1} \beta x}\right) \\
& \vdots \\
& \quad \vdots \\
& =\frac{1}{\sqrt{5}}\left(e^{2^{r} \alpha x}-e^{2^{r} \beta x}\right) .
\end{aligned}
$$

Therefore,

$$
S_{n}=\frac{1}{\sqrt{5}}\left[\frac{\left(2^{r} \alpha\right)^{n}}{n!}-\frac{\left(2^{r} \beta\right)^{n}}{n!}\right]=\frac{2^{r n} F_{n}}{n!} .
$$

Also solved by Raphael Schumacher (student), and the proposer.

Simplifying a Complicated Expression

B-1218 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.
 (Vol. 55.4, November 2017)

Find a closed form expression for

$$
\left(L_{n+1}-1\right) F_{n}\left(F_{2 n+2}-F_{n+2}\right)+\left(1-F_{n}-F_{n+2}\right) F_{n+2}\left(F_{2 n+2}-F_{n+3}\right)+\left(F_{2 n+2}-F_{n+2}\right)\left(F_{2 n+2}-F_{n+3}\right) .
$$

THE FIBONACCI QUARTERLY

Solution 1 by Charles K. Cook, Sumter, SC.

The well-known identities $F_{2 n}=F_{n} L_{n}$ and $L_{n}=F_{n-1}+F_{n+1}$ will be used as needed. Let A represent the first term, B, the second, and C, the third, of the given sum. Expanding and using the above identities yields

$$
\begin{aligned}
& A=F_{n} F_{n+1} L_{n+1}^{2}-F_{n}\left(F_{n+1}+F_{n+2}\right) L_{n+1}+F_{n} F_{n+2}, \\
& B=-F_{n+1} F_{n+2} L_{n+1}^{2}+F_{n+2}\left(F_{n+1}+F_{n+3}\right) L_{n+1}-F_{n+2} F_{n+3}, \\
& C=F_{n+1}^{2} L_{n+1}^{2}-F_{n+1}\left(F_{n+2}+F_{n+3}\right) L_{n+1}+F_{n+2} F_{n+3} .
\end{aligned}
$$

The coefficient for L_{n+1}^{2} in the sum is

$$
F_{n} F_{n+1}-F_{n+1} F_{n+2}+F_{n+1}^{2}=F_{n+1}\left(F_{n}-F_{n+2}+F_{n+1}\right)=0,
$$

whereas the coefficient for L_{n+1} is

$$
\begin{aligned}
& -F_{n}\left(F_{n+1}+F_{n+2}\right)+F_{n+2}\left(F_{n+1}+F_{n+3}\right)-F_{n+1}\left(F_{n+2}+F_{n+3}\right) \\
& \quad=-F_{n}\left(F_{n+1}+F_{n+2}\right)+\left(F_{n+2}-F_{n+1}\right) F_{n+3} \\
& \quad=0
\end{aligned}
$$

and the remaining terms are

$$
F_{n} F_{n+2}-F_{n+2} F_{n+3}+F_{n+2} F_{n+3}=F_{n} F_{n+2} .
$$

Thus, adding A, B, and C, the required closed form for the given sum is $F_{n} F_{n+2}$.

Solution 2 by Hideyuki Ohtsuka, Saitama, Japan.

We use the well-known identities $F_{2 m}=F_{m} L_{m}$, and $F_{m-1}+F_{m+1}=L_{m}$. Let $t=L_{n+1}-1$. Then, we have

$$
\begin{gathered}
F_{2 n+2}-F_{n+2}=F_{n+1} L_{n+1}-F_{n+1}-F_{n}=t F_{n+1}-F_{n} ; \\
F_{2 n+2}-F_{n+3}=F_{n+1} L_{n+1}-F_{n+1}-F_{n+2}=t F_{n+1}-F_{n+2} ; \\
1-F_{n}-F_{n+2}=1-L_{n+1}=-t .
\end{gathered}
$$

By the above identities, the expression of the problem is

$$
\begin{aligned}
& t F_{n}\left(t F_{n+1}-F_{n}\right)-t F_{n+2}\left(t F_{n+1}-F_{n+2}\right)+\left(t F_{n+1}-F_{n}\right)\left(t F_{n+1}-F_{n+2}\right) \\
& \quad=t^{2} F_{n+1}\left(F_{n}-F_{n+2}+F_{n+1}\right)+t\left[F_{n+2}\left(F_{n+2}-F_{n+1}\right)-F_{n}\left(F_{n}+F_{n+1}\right)\right]+F_{n} F_{n+2} \\
& \quad=t\left(F_{n+2} F_{n}-F_{n} F_{n+2}\right)+F_{n} F_{n+2} \\
& \quad=F_{n} F_{n+2} .
\end{aligned}
$$

Solution 3 by the proposer.

We use the identity $F_{2 n+2}=F_{n+1} L_{n+1}=F_{n+1}\left(F_{n}+F_{n+2}\right)$ to write the given expression as

$$
\begin{aligned}
& F_{n} F_{n+2}\left[\frac{\left(F_{2 n+2}-F_{n+1}\right)\left(F_{2 n+2}-F_{n+2}\right)}{F_{n+1} F_{n+2}}\right. \\
& \left.\quad-\frac{\left(F_{2 n+2}-F_{n+1}\right)\left(F_{2 n+2}-F_{n+3}\right)}{F_{n} F_{n+1}}+\frac{\left(F_{2 n+2}-F_{n+2}\right)\left(F_{2 n+2}-F_{n+3}\right)}{F_{n} F_{n+2}}\right] .
\end{aligned}
$$

Let

$$
P(x)=\frac{\left(x-F_{n+1}\right)\left(x-F_{n+2}\right)}{F_{n+1} F_{n+2}}-\frac{\left(x-F_{n+1}\right)\left(x-F_{n+3}\right)}{F_{n} F_{n+1}}+\frac{\left(x-F_{n+2}\right)\left(x-F_{n+3}\right)}{F_{n} F_{n+2}} .
$$

We have

$$
P\left(F_{n+1}\right)=P\left(F_{n+2}\right)=P\left(F_{n+3}\right)=1 .
$$

Therefore, $P(x) \equiv 1$. Thus, a closed form for the expression is

$$
F_{n} F_{n+2} \cdot P\left(F_{2 n+2}\right)=F_{n} F_{n+2} .
$$

Also solved by Brian D. Beasley, Kenny B. Davenport, Steve Edwards, Dmitry Fleischman, G. C. Greubel, Kantaphon Kuhapatanakul, Wei-Kai Lai, Ehren Metcalfe, Verónica Molina Reales (student), Ángel Plaza, Raphael Schumacher (student), Jason L. Smith, Elizabeth S. Spoehel (student), and the proposers.

An Inequality with a Cyclic Sum

B-1219 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College, Bucharest, Romania, and Neculai Stanciu, George Emil Palade School, Buzău, Romania.
(Vol. 55.4, November 2017)
Prove that, for any integer $n \geq 2$,

$$
\frac{F_{n}^{4}+F_{n}^{2}+1}{F_{n}}+\sum_{k=1}^{n-1} \frac{F_{k}^{4}+F_{k}^{2} F_{k+1}^{2}+F_{k+1}^{4}}{F_{k} F_{k+1}}>3 F_{n} F_{n+1}
$$

Editor's Note: The condition on n should be $n \geq 3$.
Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.
Since $F_{1}=1$, and

$$
F_{n} F_{n+1}=\sum_{k=1}^{n} F_{k}^{2},
$$

the proposed inequality may be written as

$$
\sum_{\substack{k=1 \\ \text { cyclic }}}^{n} \frac{F_{k}^{4}+F_{k}^{2} F_{k+1}^{2}+F_{k+1}^{4}}{F_{k} F_{k+1}}>3 \sum_{k=1}^{n} F_{k}^{2}
$$

which is a special case of the following more general inequality.
Lemma. Let a_{1}, \ldots, a_{m} be a sequence of positive real numbers. Then,

$$
\sum_{\substack{k=1 \\ \text { cyclic }}}^{m} \frac{a_{k}^{4}+a_{k}^{2} a_{k+1}^{2}+a_{k+1}^{4}}{a_{k} a_{k+1}} \geq 3 \sum_{k=1}^{m} a_{k}^{2} .
$$

Proof. It is enough to prove that, if $a, b>0$, then

$$
\frac{a^{4}+a^{2} b^{2}+b^{4}}{a b} \geq \frac{3}{2}\left(a^{2}+b^{2}\right)
$$

which is equialent to

$$
2\left(a^{4}+a^{2} b^{2}+b^{4}\right) \geq 3 a b\left(a^{2}+b^{2}\right) .
$$

THE FIBONACCI QUARTERLY

To complete the proof, observe that

$$
\begin{gathered}
a^{4}+b^{4} \geq a^{3} b+a b^{3}=a b\left(a^{2}+b^{2}\right) \\
a^{4}+2 a^{2} b^{2}+b^{4}=\left(a^{2}+b^{2}\right)\left(a^{2}+b^{2}\right) \geq 2 a b\left(a^{2}+b^{2}\right) .
\end{gathered}
$$

To obtain a strict inequality, we need $m \geq 2$, and some of the terms in the sequence a_{1}, \ldots, a_{m} have to be different.

Notice that the inequality in the problem becomes an identity when $n=2$.
Also solved by Brian D. Beasley, Brian Bradie, Kenny B. Davenport, I. V. Fedak, Dmitry Fleischman, Wei-Kai Lai and John Risher (student) (jointly), Hideyuki Ohtsuka, and the proposers.

Gelin-Cesàro Identity Yields a Telescoping Product

B-1220 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

(Vol. 55.4, November 2017)
Prove that

$$
\prod_{n=3}^{\infty}\left(1-\frac{1}{F_{n}^{4}}\right)=\frac{\alpha^{5}}{12}
$$

Solution by Steve Edwards, Kennesaw State University, Marietta, GA.
Using the Gelin-Cesàro Identity $F_{n}^{4}-1=F_{n-2} F_{n-1} F_{n+1} F_{n+2}$, we have

$$
1-\frac{1}{F_{n}^{4}}=\frac{F_{n}^{4}-1}{F_{n}^{4}}=\frac{F_{n-2} F_{n-1} F_{n+1} F_{n+2}}{F_{n}^{4}} .
$$

It follows from the telescoping property that, for $m \geq 4$,

$$
\prod_{n=3}^{m}\left(1-\frac{1}{F_{n}^{4}}\right)=\prod_{n=3}^{m} \frac{F_{n-2} F_{n-1} F_{n+1} F_{n+2}}{F_{n}^{4}}=\frac{F_{1} F_{2}^{2}}{F_{3}^{2} F_{4}} \cdot \frac{F_{m+1}^{2} F_{m+2}}{F_{m-1} F_{m}^{2}}=\frac{F_{m+1}^{2} F_{m+2}}{12 F_{m-1} F_{m}^{2}}
$$

Since $\lim _{m \rightarrow \infty} F_{m+j} / F_{m}=\alpha^{j}$, we find

$$
\prod_{n=3}^{\infty}\left(1-\frac{1}{F_{n}^{4}}\right)=\lim _{m \rightarrow \infty} \frac{F_{m+1}^{2} F_{m+2}}{12 F_{m-1} F_{m}^{2}}=\lim _{m \rightarrow \infty} \frac{1}{12}\left(\frac{F_{m+1}}{F_{m}}\right)^{2} \frac{F_{m+2}}{F_{m-1}}=\frac{\alpha^{2} \cdot \alpha^{3}}{12}=\frac{\alpha^{5}}{12}
$$

Also solved by Brian Bradie, Kenny B. Davenport, I. V. Fedak, Dmitry Fleischman, Kantaphon Kuhapatanakul, Ángel Plaza, Raphael Schumacher (student), and the proposer.

