ELEMENTARY PROBLEMS AND SOLUTIONS

EDITED BY
HARRIS KWONG

Please submit solutions and problem proposals to Dr. Harris Kwong, Department of Mathematical Sciences, SUNY Fredonia, Fredonia, NY, 14063, or by email at kwong@fredonia.edu. If you wish to have receipt of your submission acknowledged by mail, please include a selfaddressed, stamped envelope.

Each problem or solution should be typed on separate sheets. Solutions to problems in this issue must be received by May 15, 2020. If a problem is not original, the proposer should inform the Problem Editor of the history of the problem. A problem should not be submitted elsewhere while it is under consideration for publication in this Journal. Solvers are asked to include references rather than quoting "well-known results."

The content of the problem sections of The Fibonacci Quarterly are all available on the web free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy

$$
\begin{aligned}
& F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1 ; \\
& L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1 .
\end{aligned}
$$

Also, $\alpha=(1+\sqrt{5}) / 2, \beta=(1-\sqrt{5}) / 2, F_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}$, and $L_{n}=\alpha^{n}+\beta^{n}$.

PROBLEMS PROPOSED IN THIS ISSUE

Corrections: There were several errors in the August issue. In Problem B-1251, within the summations on the right sides of the proposed identities, the binomial coefficient $\binom{n}{k}$ was omitted. In the last equation of the editor's note to Problem B-1231, the denominator of the logarithmic function on the right side should be $\sqrt{2}-\beta$. The section editor apologizes to the authors and readers for the inconvenience they caused.

B-886 Proposed by Peter J. Ferraro, Roselle Park, NJ.

 (Vol. 37.4, November 1999)For $n \geq 9$, show that $\left\lfloor\sqrt[4]{F_{n}}\right\rfloor=\left\lfloor\sqrt[4]{F_{n-4}}+\sqrt[4]{F_{n-8}}\right\rfloor$.
Editor's Note: This is an old problem proposed twenty years ago. Its solution does not appear to have been published. Therefore, we invite the readers to solve it again.

B-1256 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.

For any positive integers n find an infinite set of pairs of positive Fibonacci numbers x and y such that $x^{2}-x y-y^{2}=F_{n} F_{n+1}-F_{n-1} F_{n+2}$.

B-1257 Proposed by Robert Frontczak, Landesbank Baden-Württemberg, Stuttgart, Germany.

Find closed form expressions for the alternating sums

$$
\sum_{k=0}^{n}(-1)^{k} F_{3^{k}} F_{2 \cdot 3^{k}} \quad \text { and } \quad \sum_{k=0}^{n}(-1)^{k} F_{3^{k}} L_{2 \cdot 3^{k}} .
$$

B-1258 Proposed by D. M. Bătineţu-Giurgiu, Mateo Basarab National College, Bucharest, Romania, and Neculai Stanciu, George Emil Palade School, Buzău, Romania.

Prove that
(i) $\sin \left(F_{2 n+3}\right)+\sin \left(F_{n+1} F_{n}\right)+\cos \left(F_{n+3} F_{n+2}\right) \leq \frac{3}{2}$
(ii) $\sin \left(F_{m} L_{n}\right)+\sin \left(F_{n} L_{m}\right)+\cos \left(2 F_{m+n}\right) \leq \frac{3}{2}$

B-1259 Proposed by Ángel Plaza and Sergio Falcón, Universidad de Las Palmas de Gran Canaria, Spain.

Let k be a positive integer. The k-Fibonacci numbers are defined by the recurrence relation $F_{k, n+1}=k F_{k, n}+F_{k, n-1}$, with initial values $F_{k, 0}=0$ and $F_{k, 1}=1$. Prove that
(i) $\sum_{i=1}^{n} \frac{F_{k, i}^{2}}{\sqrt{F_{k, i}+1}} \geq \frac{\left(F_{k, n}+F_{k, n+1}-1\right)^{2}}{k \sqrt{k n\left(F_{k, n}+F_{k, n+1}-1+k n\right)}}$
(ii) $\sum_{i=1}^{n} \frac{F_{k, i}^{4}}{\sqrt{F_{k, i}^{2}+1}} \geq \frac{F_{k, n}^{2} F_{k, n+1}^{2}}{k \sqrt{k n\left(F_{k, n} F_{k, n+1}+k n\right)}}$

B-1260 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

For any positive integer n, find a closed form expression for the sum

$$
\sum_{k=1}^{n}\left\lfloor\frac{F_{k}}{\alpha F_{k}-F_{k+1}}\right\rfloor .
$$

SOLUTIONS

An Easy Consequence of Radon's Inequality

B-1236 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College, Bucharest, Romania, and Neculai Stanciu, George Emil Palade School, Buzău, Romania.

Prove that, for any integers $m \geq 0$ and $n>1$,

$$
\sum_{k=1}^{n+1} \frac{\binom{n}{k-1}^{m+1}}{F_{k}^{2 m}}>\frac{2^{n(m+1)}}{F_{n+1}^{m} F_{n+2}^{m}}, \quad \text { and } \quad \sum_{k=1}^{n+1} \frac{F_{k}^{m+1}}{\binom{n}{k-1}^{m}}>\frac{\left(F_{n+3}-1\right)^{m+1}}{2^{m n}}
$$

Editor's Note: The inequalities become equalities when $m=0$; the condition on m should have been $m>0$.

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

The inequalities follow by applying Radon's inequality, which asserts that if $x_{k}, a_{k}>0$ for $k \in\{1,2, \ldots, n\}$ and $m>0$, then

$$
\frac{x_{1}^{m+1}}{a_{1}^{m}}+\frac{x_{2}^{m+1}}{a_{2}^{m}}+\cdots+\frac{x_{n}^{m+1}}{a_{n}^{m}} \geq \frac{\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{m+1}}{\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{m}}
$$

in which equality is attained when $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\cdots=\frac{x_{n}}{a_{n}}$. In our case, it leads us to

$$
\sum_{k=1}^{n+1} \frac{\binom{n}{k-1}^{m+1}}{F_{k}^{2 m}}>\frac{\left[\sum_{k=1}^{n+1}\binom{n}{k-1}\right]^{m+1}}{\left(\sum_{k=1}^{n+1} F_{k}^{2}\right)^{m}}=\frac{2^{n(m+1)}}{F_{n+1}^{m} F_{n+2}^{m}}
$$

because $\sum_{k=1}^{n+1} F_{k}^{2}=F_{n+1} F_{n+2}$.
For the second inequality, we have

$$
\sum_{k=1}^{n+1} \frac{F_{k}^{m+1}}{\binom{n}{k-1}^{m}}>\frac{\left(\sum_{k=1}^{n+1} F_{k}\right)^{m+1}}{\left[\sum_{k=1}^{n+1}\binom{n}{k-1}\right]^{m}}=\frac{\left(F_{n+3}-1\right)^{m+1}}{2^{n m}}
$$

because $\sum_{k=1}^{n+1} F_{k}=F_{n+3}-1$.
Also solved by Michel Bataille, Brian Bradie, I. V. Fedak, Dmitry Fleischman, Hideyuki Ohtsuka, Wei-Kai Lai and John Risher (student) (jointly), Henry Ricardo, Anthony Vasaturo, and the proposers.

A Telescoping Product

B-1237 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Evaluate

$$
\prod_{k=1}^{\infty}\left(1+\frac{1}{\alpha^{k}+\alpha}\right), \quad \text { and } \quad \prod_{k=1}^{\infty}\left(1-\frac{1}{\alpha^{k}+\alpha}\right) .
$$

Solution by Steve Edwards, Kennesaw State University, Marietta, GA.
We will use the following: $\alpha^{2}=\alpha+1, \alpha-1=\alpha^{-1}$, and $\lim _{n \rightarrow \infty} \frac{1}{\alpha^{n}}=0$. The k th factor in the first product is

$$
1+\frac{1}{\alpha^{k}+\alpha}=\frac{\alpha^{k}+\alpha+1}{\alpha^{k}+\alpha}=\frac{\alpha^{k}+\alpha^{2}}{\alpha^{k}+\alpha}=\frac{\alpha\left(\alpha^{k-2}+1\right)}{\alpha^{k-1}+1} .
$$

This gives

$$
\prod_{k=1}^{n}\left(1+\frac{1}{\alpha^{k}+\alpha}\right)=\alpha^{n} \prod_{k=1}^{n} \frac{\alpha^{k-2}+1}{\alpha^{k-1}+1}=\frac{\alpha^{n}\left(\alpha^{-1}+1\right)}{\alpha^{n-1}+1}=\frac{\alpha^{n+1}}{\alpha^{n-1}+1}=\frac{\alpha^{2}}{1+\alpha^{-n+1}}
$$

Then

$$
\prod_{k=1}^{\infty}\left(1+\frac{1}{\alpha^{k}+\alpha}\right)=\lim _{n \rightarrow \infty} \frac{\alpha^{2}}{1+\alpha^{-n+1}}=\alpha^{2}
$$

Next,

$$
1-\frac{1}{\alpha^{k}+\alpha}=\frac{\alpha^{k}+\alpha-1}{\alpha^{k}+\alpha}=\frac{\alpha^{k}+\alpha^{-1}}{\alpha^{k}+\alpha}=\frac{1}{\alpha^{2}} \cdot \frac{\alpha^{k+1}+1}{\alpha^{k-1}+1} .
$$

This gives

$$
\prod_{k=1}^{n}\left(1-\frac{1}{\alpha^{k}+\alpha}\right)=\frac{1}{\alpha^{2 n}} \prod_{k=1}^{n} \frac{\alpha^{k+1}+1}{\alpha^{k-1}+1}=\frac{1}{\alpha^{2 n}} \cdot \frac{\left(\alpha^{n}+1\right)\left(\alpha^{n+1}+1\right)}{\left(\alpha^{0}+1\right)\left(\alpha^{1}+1\right)},
$$

which simplifies to

$$
\prod_{k=1}^{n}\left(1-\frac{1}{\alpha^{k}+\alpha}\right)=\frac{\left(\alpha^{n}+1\right)\left(\alpha^{n+1}+1\right)}{2 \alpha^{2 n+2}}=\frac{1}{2}\left(\frac{1}{\alpha}+\frac{1}{\alpha^{n+1}}+\frac{1}{\alpha^{n+2}}+\frac{1}{\alpha^{2 n+2}}\right) .
$$

It follows that

$$
\prod_{k=1}^{\infty}\left(1-\frac{1}{\alpha^{k}+\alpha}\right)=\frac{1}{2 \alpha}
$$

Also solved by Ulrich Abel, Skyler Addy (student), Michel Bataille, Brian Braide, Pridon Davlianidze, I. V. Fedak, Dmitry Fleischman, Robert Frontczak, Nathan R. Johnson (student), Ángel Plaza, Raphael Schumacher, Jason L. Smith, Albert Stadler, David Terr, Anthony Vasaturo, and the proposer.

Telescopic Property, Again!

B-1238 Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Let $a>1$ and consider the sequence of real numbers defined recursively by $x_{0}=0, x_{1}=1$, and

$$
x_{n+1}=\left(a+\frac{1}{a}\right) x_{n}-x_{n-1}, \quad n \geq 1 .
$$

Prove that $\sum_{n=0}^{\infty} \frac{1}{x_{2^{n}}}$ is a rational number if and only if a is a rational number.

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.

We will show that

$$
\sum_{n=0}^{\infty} \frac{1}{x_{2^{n}}}=1+\frac{1}{a},
$$

from which it follows immediately that the sum is a rational number if and only if a is a rational number.

The characteristic equation associated with the given recurrence relation is

$$
\lambda^{2}-\left(a+\frac{1}{a}\right) \lambda+1=0 .
$$

The roots of this equation are a and $1 / a$. Using the initial values, we find

$$
x_{n}=\frac{a}{a^{2}-1}\left(a^{n}-\frac{1}{a^{n}}\right)=\frac{a}{a^{2}-1} \cdot \frac{a^{2 n}-1}{a^{n}} .
$$

Therefore,

$$
\sum_{n=0}^{\infty} \frac{1}{x_{2^{n}}}=\frac{a^{2}-1}{a} \sum_{n=0}^{\infty} \frac{a^{2^{n}}}{a^{2^{n+1}}-1}=\frac{a^{2}-1}{a} \sum_{n=0}^{\infty}\left(\frac{1}{a^{2^{n}}-1}-\frac{1}{a^{2^{n+1}}-1}\right) .
$$

Because the sum telescopes and $a>1$, we obtain

$$
\sum_{n=0}^{\infty} \frac{1}{x_{2^{n}}}=\frac{a^{2}-1}{a} \cdot \frac{1}{a-1}=\frac{a+1}{a}=1+\frac{1}{a} .
$$

Also solved by I. V. Fedak, Dmitry Fleischman, Hideyuki Ohtsuka, Albert Stadler, David Terr, and the proposer.

How To Prove It?

B-1239 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.

For all integers n prove that

$$
\left(\frac{1}{L_{n}}-\frac{1}{L_{n+1}}\right)^{4}+\left(\frac{1}{L_{n+1}}+\frac{1}{L_{n+2}}\right)^{4}+\left(\frac{1}{L_{n+2}}+\frac{1}{L_{n}}\right)^{4}=2\left(\frac{1}{L_{n}}+\frac{1}{L_{n+1}}-\frac{1}{L_{n+2}}\right)^{4}
$$

Editor's Remark: The challenge in this problem is how to present the proof in the least painstaking manner. To avoid complicated algebraic manipulation, one needs to come up with a clever way to simplify the proof.

Solution by Robert Frontczak, Landesbank Baden-Württemberg, Stuttgart, Ger-

 many.To prove the given identity, we will use the algebraic identity

$$
a^{4}+b^{4}+(a+b)^{4}=2\left(a^{2}+a b+b^{2}\right)^{2}
$$

Set

$$
a=\frac{1}{L_{n}}-\frac{1}{L_{n+1}}, \quad \text { and } \quad b=\frac{1}{L_{n+1}}+\frac{1}{L_{n+2}}
$$

it follows that

$$
a+b=\frac{1}{L_{n}}+\frac{1}{L_{n+2}} .
$$

Hence, it remains to show that

$$
a^{2}+a b+b^{2}=\left(\frac{1}{L_{n}}+\frac{1}{L_{n+1}}-\frac{1}{L_{n+2}}\right)^{2} .
$$

To achieve this, set $x=\frac{1}{L_{n}}, y=\frac{1}{L_{n+1}}$, and $z=\frac{1}{L_{n+2}}$. Then $a=x-y, b=y+z$,

$$
z(x+y)=x y, \quad \text { and } \quad x(y-z)=y z .
$$

Finally,

$$
\begin{aligned}
a^{2}+a b+b^{2} & =(x-y)^{2}+(x-y)(y+z)+(y+z)^{2} \\
& =x^{2}+y^{2}+z^{2}-x(y-z)+y z \\
& =x^{2}+y^{2}+z^{2} \\
& =x^{2}+y^{2}+z^{2}+2 y z-2 y z \\
& =x^{2}+y^{2}+z^{2}+2 x(y-z)-2 y z \\
& =(x+y-z)^{2} .
\end{aligned}
$$

THE FIBONACCI QUARTERLY

Also solved by Brian Bradie, Dmitry Fleischman, Wei-Kai Lai, Ehren Metcalfe, Hideyuki Ohtsuka, Sai Gopal Rayaguru, Pedro Jesús Rodríguez Rivera (student) and Ángel Plaza (jointly), Raphael Schumacher, Jason L. Smith, Albert Stadler, and the proposer.

A Trusted Friend: the AM-HM Inequality

B-1240 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College, Bucharest, Romania, and Neculai Stanciu, George Emil Palade School, Buzău, Romania.

Assume $x_{k}>0$ for $k=1,2, \ldots, n$. Prove that, for any positive integers $m \geq 1$ and $n>1$,

$$
\begin{aligned}
& \left(\sum_{k=1}^{n} \frac{1}{x_{k}}\right)\left(\sum_{\substack{i=1 \\
\text { cyclic }}}^{n} \frac{x_{i} x_{i+1}}{F_{m} x_{i}+F_{m+1} x_{i+1}}\right) \geq \frac{n^{2}}{F_{m+2}}, \\
& \left(\sum_{k=1}^{n} \frac{1}{x_{k}}\right)\left(\sum_{\substack{i=1 \\
\text { cyclic }}}^{n} \frac{x_{i} x_{i+1}}{L_{m} x_{i}+L_{m+1} x_{i+1}}\right) \geq \frac{n^{2}}{L_{m+2}} .
\end{aligned}
$$

Solution by Wei-Kai Lai and John Risher (student) (jointly), University of South Carolina Salkehatchie, Walterboro, SC.

We will prove that, for positive numbers A, B, C such that $A+B=C$, the inequality

$$
\left(\sum_{k=1}^{n} \frac{1}{x_{k}}\right)\left(\sum_{\substack{i=1 \\ \text { cyclic }}}^{n} \frac{x_{i} x_{i+1}}{A x_{i}+B x_{i+1}}\right) \geq \frac{n^{2}}{C}
$$

is true. According to the AM-HM inequality,

$$
\sum_{\substack{i=1 \\ \text { cyclic }}}^{n} \frac{x_{i} x_{i+1}}{A x_{i}+B x_{i+1}} \geq \frac{n^{2}}{\sum_{\substack{i=1 \\ \text { cyclic }}}^{n}\left(\frac{A}{x_{i+1}}+\frac{B}{x_{i}}\right)}=\frac{n^{2}}{(A+B) \sum_{i=1}^{n} \frac{1}{x_{i}}}=\frac{n^{2}}{C \sum_{i=1}^{n} \frac{1}{x_{i}}} .
$$

Therefore,

$$
\left(\sum_{k=1}^{n} \frac{1}{x_{k}}\right)\left(\sum_{\substack{i=1 \\ \text { cyclic }}}^{n} \frac{x_{i} x_{i+1}}{A x_{i}+B x_{i+1}}\right) \geq \frac{n^{2}}{C},
$$

as claimed; hence proving the two inequalities in the original problem.
Editor's Note: Ohtsuka noticed that this problem is similar to Advanced Problem H-813.
Also solved by Brian Bradie, I. V. Fedak, Dmitry Fleischman, Ángel Plaza, Hideyuki Ohtsuka, Albert Stadler, and the proposers.

