
ELEMENTARY PROBLEMS AND SOLUTIONS

EDITED BY
HARRIS KWONG

Please submit solutions and problem proposals to Dr. Harris Kwong, Department of Mathe-
matical Sciences, SUNY Fredonia, Fredonia, NY, 14063, or by email at kwong@fredonia.edu.
If you wish to have receipt of your submission acknowledged by mail, please include a self-
addressed, stamped envelope.

Each problem or solution should be typed on separate sheets. Solutions to problems in this
issue must be received by November 15, 2024. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results.”

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1346 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.

Show that for all integers n ≥ 1,
n∑

i=1

1

L2i
≤ L2n − 2

L2n+1 − 1
.

Deduce that
∞∑
i=0

1

L2i
≤

√
5

2
.

B-1347 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

For integers m > n ≥ 0, prove that

n∑
k=0

(
m

k

)
(−1)n+kFm−2k =

m−1∑
k=n

(
k

n

)
Fk−2n−1.
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B-1348 Proposed by Juan Pla, Paris, France.

Prove that

(a) neither Ln nor Fn are multiples of 7 whenever n is odd, and
(b) Ln is a multiple of 7 if and only if n = 8m+ 4 for some integer m.

B-1349 Proposed by Toyesh Prakash Sharma (undergraduate), Agra College,
Agra, India.

For any integer n ≥ 2, show that

FLn
n F

Fn+1

n+1 LFn
n ≤ F

Fn+1

2n .

B-1350 Proposed by Michel Bataille, Rouen, France.

Prove that
∞∑
n=1

1

F3n
≤ 4

9

∞∑
n=1

(−1)1+Fn

Fn
.

SOLUTIONS

The Powers of i

B-1326 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 61.2, May 2023)

Let i =
√

−1. For any integer n ≥ 1, prove that∣∣∣∣∣
n∑

k=1

ikFk

∣∣∣∣∣ = F⌈n/2⌉

√
F2⌊n/2⌋+1.

Solution by Steve Edwards, Roswell, GA.

First note that it is easy to show by induction that
m∑
k=1

(−1)k+1F2k−1 = (−1)m+1F 2
m, and

m∑
k=1

(−1)k+1F2k = (−1)m+1FmFm+1.

Using properties of the powers of i and these identities, we have

n∑
k=1

ikFk = i

⌈n/2⌉∑
k=1

(−1)k+1F2k−1 −
⌊n/2⌋∑
k=1

(−1)k+1F2k

= i (−1)⌈n/2⌉+1F 2
⌈n/2⌉ − (−1)⌊n/2⌋+1F⌊n/2⌋F⌊n/2⌋+1.

Now for n even, ⌈n/2⌉ = n/2 = ⌊n/2⌋, from which it follows that∣∣∣∣∣
n∑

k=1

ikFk

∣∣∣∣∣ = F⌈n/2⌉

√
F 2
⌊n/2⌋ + F 2

⌊n/2⌋+1 = F⌈n/2⌉

√
F2⌊n/2⌋+1,

where we have used the identity F 2
m + F 2

m+1 = F2m+1.
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For n odd, ⌈n/2⌉ = n/2 + 1/2 = ⌊n/2⌋+ 1, so∣∣∣∣∣
n∑

k=1

ikFk

∣∣∣∣∣ = F⌈n/2⌉

√
F 2
⌈n/2⌉ + F 2

⌊n/2⌋ = F⌈n/2⌉

√
F 2
⌊n/2⌋+1 + F 2

⌊n/2⌋ = F⌈n/2⌉

√
F2⌊n/2⌋+1.

Editor’s Note: Greubel found a Lucas analog:∣∣∣∣∣
n∑

k=0

ikLk

∣∣∣∣∣ =
{
L⌈n/2⌉

√
F2⌊n/2⌋+1 n even,

F⌈(n+1)/2⌉
√
5F2⌊n/2⌋+1 n odd.

Also solved by Thomas Achammer, Michael R. Bacon and Charles K. Cook
(jointly), Michel Bataille, Brian Bradie, Kenny B. Davenport, I. V. Fedak, Dmitry
Fleischman, Richard G. Gonzalez Hernandez and Edwin Daniel Patiño Osorio
(undergraduates) (jointly), G. C. Greubel, Ángel Plaza, Patrick Rappa, Raphael
Schumacher (graduate student), David Terr, Eli Torek (undergraduate), Yunyong
Zhang, and the proposer.

Two Infinite Series of Summations of Fibonacci/Lucas Numbers

B-1327 Proposed by Brian Bradie, Christopher Newport University, Newport
News, VA.
(Vol. 61.2, May 2023)

For each nonnegative integer n, define

an =

(
n∑

k=0

Fk

)2

− 2
n∑

k=0

F 2
k , and bn =

(
n∑

k=0

Lk

)2

− 2
n∑

k=0

L2
k.

Evaluate

∞∑
n=0

an
3n

and

∞∑
n=0

bn
3n

.

Solution by Jason L. Smith, Richland Community College, Decatur, IL.

We shall extend the results to the generalized Fibonacci numbers defined as G1 = a, G2 = b,
and

Gn = Gn−1 +Gn−2 for n ≥ 3.

We want to evaluate
∑∞

n=0 cn/3
n, where

cn =

(
n∑

k=0

Gk

)2

− 2

n∑
k=0

G2
k.

Using Problems 11 and 14 [1, p. 113], with G0 = b− a, we find

n∑
k=0

Gk = Gn+2 − a, and

n∑
k=0

G2
k = GnGn+1 + (b− a)(b− 2a).

It is known [1, p. 109] that

Gn = aFn−2 + bFn−1,
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which can be easily proved by induction. Therefore,

cn = (Gn+2 − a)2 − 2 [GnGn+1 + (b− a)(b− 2a)]

= a2(F 2
n − 2Fn−2Fn−1) + 2ab (FnFn+1 − F 2

n−1 − Fn−2Fn)

+ b2(F 2
n+1 − 2Fn−1Fn)− 2a2Fn − 2abFn+1 − (3a2 − 6ab+ 2b2).

Since

F 2
n − 2Fn−2Fn−1 = (Fn−1 + Fn−2)

2 − 2Fn−2Fn−1 = F 2
n−1 + F 2

n−2 = F2n−3,

we also obtain F 2
n+1 − 2Fn−1Fn = F2n−1. In addition,

FnFn+1 − F 2
n−1 − Fn−2Fn = Fn(Fn+1 − Fn−2)− F 2

n−1

= 2FnFn−1 − F 2
n−1 = Fn−1(2Fn − Fn−1) = Fn−1Ln−1 = F2n−2.

They lead to

cn = a2F2n−3 + 2abF2n−2 + b2F2n−1 − 2a2Fn − 2abFn+1 − (3a2 − 6ab+ 2b2).

Next, we use generating functions to evaluate
∑∞

n=0 cn/3
n.

We have [1, p. 230]
∞∑
n=0

F2n+1x
n =

1− x

1− 3x+ x2
, and

∞∑
n=0

F2nx
n =

x

1− 3x+ x2
.

It follows that (since F−3 = 2 and F−1 = 1)
∞∑
n=0

F2n−3x
n = F−3 + F−1x+ x2 · 1− x

1− 3x+ x2
=

2− 5x

1− 3x+ x2
.

In a similar fashion, we find (using F−2 = −1)
∞∑
n=0

F2n−2x
n =

−1 + 3x

1− 3x+ x2
, and

∞∑
n=0

F2n−1x
n =

1− 2x

1− 3x+ x2
.

Hence,
∞∑
n=0

F2n−3

3n
= 3,

∞∑
n=0

F2n−2

3n
= 0, and

∞∑
n=0

F2n−1

3n
= 3.

From
∞∑
n=0

Fnx
n =

x

1− x− x2
,

∞∑
n=0

Fn+1x
n =

1

1− x− x2
, and

∞∑
n=0

xn =
1

1− x
,

we deduce that
∞∑
n=0

Fn

3n
=

3

5
,

∞∑
n=0

Fn+1

3n
=

9

5
, and

∞∑
n=0

1

3n
=

3

2
.

In conclusion, we find
∞∑
n=0

cn
3n

= 3a2 + 3b2 − 6a2

5
− 18ab

5
− 3(3a2 − 6ab+ 2b2)

2
=

27a(2b− a)

10
.

Since cn = an when a = b = 1, and cn = bn when a = 1 and b = 3, we gather that
∞∑
n=0

an
3n

=
27

10
, and

∞∑
n=0

bn
3n

=
27

2
.
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Also solved by Thomas Achammer, Michel Bataille, Charles K. Cook and Michael
R. Bacon (jointly), Kenny B. Davenport, Steve Edwards, I. V. Fedak. Dmitry
Fleischman, Robert Frontczak, G. C. Greubel, Edwin Daniel Patiño Osorio
(undergraduate), Raphael Schumacher (graduate student), Albert Stadler, David
Terr, Yunyong Zhang, and the proposer.

An Almost Trivial Inequality

B-1328 Proposed by Toyesh Prakash Sharma (undergraduate), Agra College,
Agra, India.
(Vol. 61.2, May 2023)

For any integer n ≥ 0, show that

2n+1F2n+1

2n+ 1
≥ Ln.

Solution 1 by Brian D. Beasley, Simpsonville, SC.

The claim holds with equality for n = 0. For n ≥ 1, we note that 2n+1 > 2n+ 1 and thus

2n+1F2n+1

2n+ 1
> F2n+1 > F2n = FnLn ≥ Ln.

Solution 2 by Hideyuki Ohtsuka, Saitama, Japan.

For n = 0, the left and right sides equal 2. For n ≥ 1, the inequality holds since

2n+1F2n+1 > 2F2n

n∑
k=0

(
n

k

)
≥ 2FnLn(1 + n) > (2n+ 1)Ln.

Also solved by Thomas Achammer, Michel Bataille, Brian D. Beasley (second
solution), Brian Bradie, Kenny B. Davenport (two solutions), I. V. Fedak, Dmitry
Fleischman, G. C. Greubel, Ralph P. Grimaldi, Edwin Daniel Patiño Osorio
(undergraduate), Ángel Plaza, Albert Stadler, Eli Torek (undergraduate), Andrés
Ventas, and the proposer.

It Is Always Greater Than e2

B-1329 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 61.2, May 2023)

For any positive integer n, prove that(
F6nL2n

L6nF2n

)L4n

> e2.

Solution by I. V. Fedak, Vasyl Stefanyk Precarpathian National University, Ivano-
Frankivsk, Ukraine.
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First, we note that

F6nL2n

L6nF2n
=

α6n − β6n

α2n − β2n
· α

2n + β2n

α6n + β2n
=

α4n + α2nβ2n + β4n

α4n − α2nβ2n + β4n
=

L4n + 1

L4n − 1
.

Next, consider the function f(x) =
(
x+1
x−1

)x
, where x > 1. We have

lim
x→∞

f(x) = lim
x→∞

((
1 +

2

x− 1

)x−1
2

) 2x
x−1

= e2.

Let g(x) = ln f(x) = x ln
(
x+1
x−1

)
. Then

g′(x) = ln

(
x+ 1

x− 1

)
− 2x

x2 − 1
.

We see that limx→∞ g′(x) = 0. From here, since g′′(x) = 4
(x2−1)2

> 0, we obtain g′(x) < 0 for

all x > 1. Therefore, over the interval (1,∞), both functions g(x) and f(x) are decreasing.
Thus, using limx→∞ f(x) = e2, we deduce that f(x) > ex for all x > 1. In particular, if
x = L4n, where n is any positive integer,(

F6nL2n

L6nF2n

)L4n

=

(
L4n + 1

L4n − 1

)L4n

> e2.

Also solved by Thomas Achammer, Michel Bataille, Brian D. Beasley, Brian
Bradie, Kenny B. Davenport, Dmitry Fleischman, Won Kyun Jeong, Ángel Plaza,
Albert Stadler, David Terr, Andrés Ventas, and the proposer.

Two Infinite Products Related to Fibonacci/Lucas Numbers

B-1330 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.
(Vol. 61.2, May 2023)

Two sequences of numbers xn and yn are defined by the same building rule zn+1 = 1+zn
4−zn

,
n ≥ 0, but with different initial values x0 = 0 and y0 = 1. Prove that

n∏
k=1

xk =
1

F2⌊n/2⌋+2L2⌊(n−1)/2⌋+3
, and

n∏
k=1

yk =
2

F2⌊n/2⌋+1L2⌊(n−1)/2⌋+2
.

Solution by Michel Bataille, Rouen, France.

We will use the following remark: if 0 ≤ zn ≤ 1, then zn+1 ̸= 4, and

zn+2 =
1 + zn+1

4− zn+1
=

1 + 1+zn
4−zn

4− 1+zn
4−zn

=
1

3− zn
.

First, we show that for any n ≥ 1,

x2n−1 =
L2n−1

L2n+1
, x2n =

F2n

F2n+2
, y2n−1 =

L2n−2

L2n
, y2n =

F2n−1

F2n+1
. (1)
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Direct computation yield x1 = 1
4 , x2 = 1

3 , y1 = 2
3 , and y2 = 1

2 , The relations in (1) hold for
n = 1. Assume that (1) holds for some positive integer n. Since x2n−1, x2n, y2n−1, y2n are in
the interval [0, 1], the remark above gives

x2n+1 =
1

3− x2n−1
=

1

3− L2n−1

L2n+1

=
L2n+1

3L2n+1 − L2n−1
=

L2n+1

L2n+3
,

the latter because

3L2n+1 − L2n−1 = 2L2n+1 + L2n = L2n+1 + L2n+2 = L2n+3.

Similarly, we obtain

x2n+2 =
1

3− x2n
=

1

3− F2n
F2n+2

=
F2n+2

3F2n+2 − F2n
=

F2n+2

F2n+4
,

and

y2n+1 =
L2n

3L2n − L2n−2
=

L2n

L2n+2
, y2n+2 =

F2n+1

3F2n+1 − F2n−1
=

F2n+1

F2n+3
.

This completes the induction showing that (1) holds for all n ≥ 1.
From (1), we obtain that for any m ≥ 1,

2m∏
k=1

xk =
L1F2

L2m+1F2m+2
=

1

L2m+1F2m+2
,

2m∏
k=1

yk =
L0F1

L2mF2m+1
=

2

L2mF2m+1
,

and for any m ≥ 0

2m+1∏
k=1

xk =
1

F2m+2L2m+3
,

2m+1∏
k=1

yk =
2

F2m+1L2m+2
.

They agree with the assertions in the problem statement.

Also solved by Thomas Achammer, Michael R. Bacon and Charles K. Cook
(jointly), Molly George, Jade Melanson, Ty Miller and James Sun (high school
students attending the 2023 Math Research Experience Program at the Citadel,
Charleston, SC) (jointly). Steve Edwards, I. V. Fedak, Dmitry Fleischman,

G. C. Greubel, Edwin Daniel Patiño Osorio (undergraduate), Ángel Plaza, Raphael
Schumacher (graduate student), Yunyong Zhang, and the proposer.

Editor’s Note: Due to an oversight, historical comments by the proposer (Hans J. H. Tuenter)
were inadvertently omitted when the solution to Problem B-1325 was published.

Tuenter’s Comments and Historical References to Problem B-1325 : We note that a similar
problem was posed in the March 1969 issue of the Scientific American. In his column Math-
ematical Games, Martin Gardner [2] asked to show that the sum of 10 consecutive numbers
in a generalized Fibonacci sequence is 11 times the seventh number. The problem can also
be found in Gardner’s book Mathematics, Magic and Mystery [1, pp. 158–159], where it is
mentioned that its roots go back to 1940 as a performance trick described in The Jinx, a
popular magic magazine in its days.
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Correction: Ian Fultz’s last name was misspelled in the list of solvers of Problem B-1325 in
the February issue. The section editor would like to apologize to Ian for his misstep.
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