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PROBLEMS PROPOSED IN THIS ISSUE

H-665 Proposed by G. C. Greubel, Newport News, VA
Given the bilateral series

1H1(a; b; x) =
n=∞∑

n=−∞

(a)n

(b)n

xn

derive general expressions that reduce to the equations
1∑

r=0

∞∑
n=0

(
2m

2n

)
1H1(2n− 2m; 2n + 1; (−1)r

√
5) = 5 · 4m−1L2m

1∑
r=0

∞∑
n=0

(−1)r

(
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2n
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1H1(2n− 2m; 2n + 1; (−1)r+1

√
5) = 53/2 · 4m−1F2m.

H-666 Proposed by H.-J. Seiffert, Berlin, Germany
The Pell and Pell-Lucas numbers are defined by P0 = 0, P1 = 1, Q0 = 2, Q1 = 2 and

Pn+1 = 2Pn + Pn−1, Qn+1 = 2Qn + Qn−1 for all n ≥ 1. Prove that, for all positive integers
n, we have

P2n−1 = 2n−2(4n−1 + 1)− 22−n

b(n−3)/4c∑

k=0

(
4n− 2

2n− 8k − 5

)
,

Q2n = 2n(22n−1 + 1)− 23−n

b(n−2)/4c∑

k=0

(
4n

2n− 8k − 4

)
.

H-667 Proposed by Herman Roelants, Leuven, Belgium
Let un = pun−1 + qun−2 for all n ≥ 2, with u0 = 0, u1 = 1 and p, q > 0. Prove that

π

4
=

∞∑
n=0

(−1)nu2n+1

(2n + 1)(p2 + 4q)n
t2n+1 with t =

2

1 +
√

p2+8q
p2+4q

.
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H-668 Proposed by A. Cusumano, Great Neck, NY

For each k ≥ 2, let (F
(k)
n )n≥1 be the kth order linear recurrence given by

F
(k)
n+k =

k−1∑
i=0

F
(k)
n+i, for all n ≥ 1,

with F
(k)
n = 1 for n = 1, . . . , k. Prove the following:

(a) Rk = limn→∞ F
(k)
n+1/F

(k)
n exists for all k ≥ 1.

(b) limk→∞ Rk = 2.
(c) limk→∞(Rk+1 −Rk)/(Rk+2 −Rk+1) = 2.

SOLUTIONS

An Identity For The Lucas Numbers

H-648 Proposed by Ovidiu Furdui, Kalamazoo, MI
(Vol. 44, No. 4, November 2006)

Let n be a positive integer. Prove that the following identity holds

Ln+1 = (n + 1)



b(n−1)/2c∑

j=0

1⌊
n−1

2

⌋− j + 1
·
( ⌊

n
2

⌋
+ j⌊

n−1
2

⌋− j

)
 + 1.

Solution by H.-J. Seiffert, Berlin, Germany

The Lucas polynomials are defined by L0(x) = 2, L1(x) = x, and Ln+2(x) = xLn+1(x) +
Ln(x) for n ≥ 0. We shall prove that, for all complex numbers x and all nonnegative integers
n,

Ln+1(x) = xn+1 +

b(n−1)/2c∑
j=0

n + 1

bn−1
2
c − j + 1

( bn
2
c+ j

bn−1
2
c − j

)
x2j+(1+(−1)n)/2.

The proposed identity is obtained when letting x = 1.
It is known (see equation (2.16) of [1]) that

Ln+1(x) = xn+1 +

b(n+1)/2c∑

k=1

n + 1

n + 1− k

(
n + 1− k

k

)
xn+1−2k.

Since
1

n + 1− k

(
n + 1− k

k

)
=

1

k

(
n− k

k − 1

)
, k = 1, 2, . . . ,

⌊
n + 1

2

⌋
,

⌊
n + 1

2

⌋
=

⌊
n− 1

2

⌋
+ 1, n− 1−

⌊
n− 1

2

⌋
=

⌊n

2

⌋
, and

n− 1− 2

⌊
n− 1

2

⌋
= (1 + (−1)n)/2,

it is easily verified that the above stated identity follows by reindexing k = bn−1
2
c − j + 1.

[1] A. F. Horadam and Bro. J. M. Mahon, Pell and Pell-Lucas Polynomials, The Fibonacci
Quarterly, 23.1 (1985), 7–20.

Also solved by the proposer.
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Fibonacci Secants

H-649 Proposed by Stanley Rabinowitz, Chelmsford, MA
(Vol. 44, No. 4, November 2006)

Find positive integers a, b, and c such that sec(Fa) + sec(Fb) = Fc, where all angles are
measured in degrees.

Solution by the proposer

We start with the known numerical value

cos 72◦ =

√
5− 1

4
.

Then using cos 2x = 2 cos2 x− 1, we get

cos 144◦ = 2

(√
5− 1

4

)2

− 1 = −
√

5 + 1

4
.

Thus,

sec 72◦ =
1

cos 72◦
=

4√
5− 1

=
√

5 + 1,

and

sec 144◦ =
1

cos 144◦
= − 4√

5 + 1
= 1−

√
5.

Hence,
sec 72◦ + sec 144◦ = 2 = F3.

We recognize 144 as the Fibonacci number F12, but at first glance, 72 does not appear to be
a Fibonacci number. However, modulo 360, 72 is a Fibonacci number. In particular,

F96 = 51680708854858323072 = 143557524596828675 · 360 + 72.

Thus,
sec F12 + sec F96 = F3,

so a = 12, b = 96, c = 3 is a solution to our problem.

Secants, Cosecants and Differentials

H-650 Proposed by Paul S. Bruckman, Sointula, Canada
(Vol. 45, No. 1, February 2007)

Let D = d/dz be the differential operator. Let f = f(z) = csc z, where z is any complex
number 6= nπ, where n is any integer. Prove the following identities valid for all integers
m ≥ 1 :

f 2m+2 =
1

(2m + 1)!

m∏
n=1

{D2 + 4n2}(f 2);

f 2m+1 =
1

(2m)!

m∏
n=1

{D2 + (2n− 1)2}(f).

Show that the same relations hold with the function f(z) = sec z when z 6= (n + 1/2)π,
where n is any integer.
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Solution by Michael S. Becker and Charles K. Cook, Sumter, SC

First note that the restrictions on the complex numbers is for the csc z and sec z to be
defined. Note also that for f(z) = csc z or f(z) = sec z the following routinely derived
formulas are valid:

D2f 2 = 6f 4 − 4f 2, D2f = 2f 3 − f,

D2f 2m+2 = (2m + 3)(2m + 2)f 2m+4 − (2m + 2)2f 2m+2, and

D2f 2m+1 = (2m + 2)(2m + 1)f 2m+3 − (2m + 1)2f 2m+1.

In what follows, we use the above formulas as needed. If m = 1, then

1

(2m + 1)!

m∏
n=1

{D2 + 4n2}f 2 =
1

6
{D2 + 4}f 2 =

1

6
{6f 4 − 4f 2 + 4f 2} = f 4.

If for fixed m ≥ 1,
1

(2m + 1)!

m∏
n=1

{D2 + 4n2}f 2 = f 2m+2,

then for m + 1 we have

1

(2m + 3)!

m+1∏
n=1

{D2 + 4n2}f 2 =
1

(2m + 3)(2m + 2)
{D2 + 4(m + 1)2}f 2m+2

=
1

(2m + 3)(2m + 2)
{(2m + 3)(2m + 2)f 2m+4 − (2m + 2)2f 2m+2 + 4(m + 1)2f 2m+2}

= f 2m+4 = f 2(m+1)+2.

Thus, by induction, in either case f(z) = csc z or f(z) = sec z, we have

f 2m+2 =
1

(2m + 1)!

m∏
n=1

{D2 + 4n2}f 2.

Similarly, if m = 1, then

1

(2m)!

m∏
n=1

{D2 + (2n− 1)2}f 2 =
1

2
{D2 + 1}f =

1

2
{2f 3 − f + f} = f 3.

If for fixed m ≥ 1,
1

(2m)!

m∏
n=1

{D2 + (2n− 1)2}f 2 = f 2m+1,

then for m + 1 we have

1

(2m + 2)!

m+1∏
n=1

{D2 + (2n− 1)2}f 2 =
1

(2m + 2)(2m + 1)
{D2 + (2m + 1)2}f 2m+1

=
1

(2m + 2)(2m + 1)
{(2m + 2)(2m + 1)f 2m+3 − (2m + 1)2f 2m+1 + (2m + 1)2f 2m+1}

= f 2m+3 = f 2(m+1)+1.
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Thus, again by induction, in either case f(z) = csc z or f(z) = sec z, we have

f 2m+1 =
1

(2m)!

m∏
n=1

{D2 + (2n− 1)2}f.

Also solved by Kenneth Davenport, G. C. Greubel, and the proposer.

Late Acknowledgement. H-647 was also solved by Paul S. Bruckman and by Rigoberto
Florez and Charles K. Cook (jointly).

PLEASE SEND IN PROPOSALS!
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