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PROBLEMS PROPOSED IN THIS ISSUE

H-712 Proposed by N. Gauthier, The Royal Military College of Canada, Kingston,
ON

The nth central binomial coefficient is, for an integer n ≥ 0: Bn =
(

2n
n

)

. Then, for a
nonnegative integer m, define the convolution

bm(n) =

n
∑

k=0

kmBn−kBk,

where b0(n) =
∑n

k=0Bn−kBk. Prove the following recurrence,

bm(n) =
22n−m(2m− 1)!!(n)m

m!
−

m−1
∑

k=1

S(k)
m bk(n).

In this expression, the sum in the right–hand side is taken to vanish when m = 0, 1, and the

coefficients are Stirling numbers of the first kind, {S
(k)
m : 1 ≤ k ≤ m}. Also,

(2m− 1)!! = 1 · 3 · 5 · · · (2m− 1); (n)m = n(n− 1) . . . (n−m+ 1),

where, by convention, (2m− 1)!! = 1 and (n)m = 1 for m = 0.

H-713 Proposed by Hideyuki Ohtsuka, Saitama, Japan

Determine

(1)

∞
∑

k=1

2kF2k

L3·2k
and (2)

∞
∑

k=1

2kF 3
2k

L2·2kL3·2k
.

H-714 Proposed by N. Gauthier, The Royal Military College of Canada, Kingston,
ON

Let n be a positive integer. Find a closed–form expression for the following sum:

S(n) =

n
∑

k=1

k2
(

2n− 2k

n− k

)(

2k

k

)

.

FEBRUARY 2012 89



THE FIBONACCI QUARTERLY

H-715 Proposed by Hideyuki Ohtsuka, Saitama, Japan

The Tribonacci numbers Tn satisfy

T0 = 0, T1 = T2 = 1, Tn+3 = Tn+2 + Tn+1 + Tn for n ≥ 0.

Find explicit formulas for

(1)

n
∑

k=1

T 2
k and (2)

n
∑

k=1

(T 2
k − Tk+1Tk−1)

2.

SOLUTIONS

Catalan’s Constant, π and ln 2

H-691 Proposed by Ovidiu Furdui, Cluj, Romania and Huizeng Qin, Shandong,
China
(Vol. 47, No. 3, August 2009/2010)

Find the value of

∞
∑

n=1

(−1)n
(

ln 2−
1

n+ 1
−

1

n+ 2
− · · · −

1

2n

)2

.

Solution by Khristo N. Boyadzhiev, Ohio Northern University, Ohio

Let σ be the sum to be evaluated. We shall see that

σ =
G

2
+

13π2

192
−

7(ln 2)2

8
−

π ln 2

8
, (1)

where G is the Catalan constant to be defined later.
First we use a well-known identity (see [3])

1

n+ 1
+

1

n+ 2
+ · · · +

1

2n
=

2n
∑

k=1

(−1)k−1

k
.

At the same time,

ln 2 =
∞
∑

k=1

(−1)k−1

k
.

Thus,

ln 2−
1

n+ 1
−

1

n+ 2
− · · · −

1

2n
=

∞
∑

k=2n+1

(−1)k−1

k
=

∫ 1

0

x2ndx

1 + x
.
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The last equality is easy to establish by expanding 1/(1 + x) in power series and integrating
termwise. Next we write

σ =

∞
∑

n=1

(−1)n
(
∫ 1

0

x2ndx

1 + x

)2

=

∞
∑

n=1

(−1)n
(
∫ 1

0

x2ndx

1 + x

)(
∫ 1

0

y2ndy

1 + y

)

=
∞
∑

n=1

(−1)n
∫ 1

0

∫ 1

0

x2ny2ndxdy

(1 + x)(1 + y)

=

∫ 1

0

∫ 1

0

(

∞
∑

n=1

(−x2y2)n

)

dxdy

(1 + x)(1 + y)

= −

∫ 1

0

∫ 1

0

x2y2dxdy

(1 + x2y2)(1 + x)(1 + y)
.

Here, we set y = u/x to get

−σ =

∫ 1

0

(
∫ x

0

u2du

(1 + u2)(u+ x)

)

dx

(1 + x)

=

∫ 1

0

(

x2 ln 2

1 + x2
+

ln(1 + x2)

2(1 + x2)
−

x arctan x

1 + x2

)

dx

(1 + x)

= ln 2

∫ 1

0

x2dx

(1 + x2)(1 + x)
+

1

2

∫ 1

0

ln(1 + x2)dx

(1 + x2)(1 + x)
+

∫ 1

0

−x arctanxdx

(1 + x2)(1 + x)
; (2)

i.e.,

−σ = A ln 2 +
1

2
B + C, (3)

where A, B, C are the corresponding integrals in (2). We calculate them one by one. The
first one is very easy:

A =
3 ln 2

4
−

π

8
.

Next,

B =
1

2

(
∫ 1

0

ln(1 + x2)dx

1 + x
+

∫ 1

0

ln(1 + x2)dx

1 + x2
−

∫ 1

0

x ln(1 + x2)dx

1 + x2

)

.

We have
∫ 1

0

x ln(1 + x2)dx

1 + x2
=

1

2

∫ 1

0
ln(1 + x2)d ln(1 + x2) =

(ln 2)2

4
,

∫ 1

0

ln(1 + x2)dx

1 + x
=

π ln 2

2
−G (4)

(from tables, G is the Catalan constant; see, for example, 4.296.5 in [2]),
∫ 1

0

ln(1 + x2)dx

1 + x
=

3(ln 2)2

4
−

π2

48

(computed by hand, solution available). Therefore,

B =
1

2

(

(ln 2)2

2
−

π2

48
+

π ln 2

2
−G

)

.
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Finally,
∫ 1

0

−x arctan xdx

(1 + x2)(1 + x)
=

1

2

∫ 1

0

arctan xdx

1 + x
−

1

2

∫ 1

0

x arctan xdx

1 + x2
−

1

2

∫ 1

0

arctan xdx

1 + x2
,

where
∫ 1

0

arctan xdx

1 + x
=

π ln 2

8

(evaluated in Problem 833 in [1]; also in [2], 4.535.1).
∫ 1

0

arctan xdx

1 + x2
=

1

2
(arctan x)2

∣

∣

∣

1

0
=

π2

8
,

∫ 1

0

x arctan xdx

1 + x2
=

π ln 2

8
−

1

2

∫ 1

0

ln(1 + x2)dx

1 + x2

=
π ln 2

8
−

1

2

(

π ln 2

2
−G

)

=
G

2
−

π ln 2

8

(after integration by parts and using (4); the integral can also be reduced to 4.531.7 in [2]).
Thus,

C =
1

2

(

π ln 2

4
−

π2

8
−

G

2

)

.

From (3), we obtain (1).

References
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Also solved by Kenneth B. Davenport and the proposers.

Closed Forms For Trigonometric Sums

H-692 Proposed by Napoleon Gauthier, Kingston, ON
(Vol. 47, No. 3, August 2009/2010)

Let q ≥ 1, N ≥ 3 be integers and define Q = b(N − 1)/2c. Find closed form expressions for
the following sums:

a) P0(θ, q) =

q
∑

k=1

sin(2k − 1)θ

cos2 kθ cos2(k − 1)θ
;

b) R0(θ, q) =

q
∑

k=1

sin(2k − 1)θ[sin2 θ + sin2(2k − 1)θ]

cos4 kθ cos4(k − 1)θ
;

c) P1(N) =

Q
∑

k=1

k sin (2k−1)π
N

cos2 kπ
N cos2 (k−1)π

N

;
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d) R1(N) =

Q
∑

k=1

k sin (2k−1)π
N

[

sin2 π
N + sin2 (2k−1)π

N

]

cos4 kπ
N cos4 (k−1)π

N

.

Solution by the proposer

To obtain the sought closed–form expressions, we first prove three lemmas.

Lemma 1. For k a positive integer and θ a real variable such that 0 < kθ < π/2, the following
relation holds:

sin θ sin(2k − 1)θ

cos2 kθ cos2(k − 1)θ
= tan2 kθ − tan2(k − 1)θ. (5)

Proof. Consider the following trigonometric identities

sin kθ cos(k − 1)θ − cos kθ sin(k − 1)θ = sin θ,

sin kθ cos(k − 1)θ + cos kθ sin(k − 1)θ = sin(2k − 1)θ,

and divide the results by cos kθ cos(k − 1)θ. This gives

sin θ

cos kθ cos(k − 1)θ
= tan kθ − tan(k − 1)θ,

(6)

sin(2k − 1)θ

cos kθ cos(k − 1)θ
= tan kθ + tan(k − 1)θ.

Multiplying the above two relations (6), we get (5). �

Lemma 2. For k a positive integer and θ a real variable such that 0 < kθ < π/2, the following
holds

sin(2k − 1)θ[sin2 θ + sin2(2k − 1)θ]

cos4 kθ cos4(k − 1)θ
= 2csc θ(tan4 kθ − tan4(k − 1)θ). (7)

Proof. Square the first relation (6) and get

sin2 θ

cos2 kθ cos2(k − 1)θ
= tan2 θ + tan2(k − 1)θ − 2 tan kθ tan(k − 1)θ. (8)

Next, we square the second relation (6) and get

sin2(2k − 1)θ

cos2 kθ cos2(k − 1)θ
= tan2 θ + tan2(k − 1)θ + 2 tan kθ tan(k − 1)θ. (9)

Then add (8) and (9) to get

sin2 θ + sin2(2k − 1)θ

cos2 kθ cos2(k − 1)θ
= 2(tan2 kθ + tan2(k − 1)θ). (10)

Multiplication of (10) by (5) and division of the result by sin θ then gives (7). �

Lemma 3. Consider an arbitrary, well-defined sequence of functions or numbers,

{wk : k = 1, 2, 3, . . .}

and, for any positive integer q, define the following sums

s0(q) =

q
∑

k=1

wk; s1(q) =

q
∑

k=1

kwk.
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Then the following holds:

s1(q) = (q + 1)s0(q)−

q
∑

k=1

s0(k). (11)

Proof. Consider the following set of q equations:

w1 +w2 + w3 + · · ·+ wq = s0(q);

w2 + w3 + · · ·+ wq = s0(q)− s0(1);

w3 + · · ·+ wq = s0(q)− s0(2);

· · ·

wq = s0(q)− s0(q − 1).

Then sum the terms in the left–hand side and equate the result to the sum of the terms in the
right–hand side. This gives

w1 + 2w2 + · · ·+ qwq = qs0(q)−

q−1
∑

k=1

s0(k).

Equation (11) follows upon adding and subtracting s0(q) in the right–hand side of this result.
�

To get a closed form for a), divide (5) by sin θ and note that the sum over 1 ≤ k ≤ q
collapses. This gives:

P0(q) =

q
∑

k=1

csc θ(tan2 kθ − tan2(k − 1)θ) = csc θ tan2 qθ. (12)

Similarly, use (7) to get a closed form for b) and get:

R0(q) =

q
∑

k=1

2 csc θ(tan4 kθ − tan4(k − 1)θ) = 2 csc θ tan4 qθ. (13)

We now find closed forms for P1(N) and R1(N), as defined in parts c) and d) of the problem
statement.

To proceed, let q be an integer such that 1 ≤ k ≤ q, with 0 < kθ < π/2, and consider the
two functions

P1(θ; q) =

q
∑

k=1

k sin(2k − 1)θ

cos2 kθ cos2(k − 1)θ
= (q + 1)P0(θ, q)−

q
∑

k=1

P0(θ, k);

R1(θ; q) =

q
∑

k=1

k sin(2k − 1)θ(sin2 θ + sin2(2k − 1)θ)

cos2 kθ cos2(k − 1)θ
(14)

= (q + 1)R0(θ, q)−

q
∑

k=1

R0(θ, k).

The right–hand sides of the two relations (14) follow from (11) applied to the pairs {P1(θ; q), P0(θ; q)}
and {R1(θ; q), R0(θ; q)} with
{

wk =
sin(2k − 1)θ

cos2 kθ cos2(k − 1)θ

}

and

{

wk =
sin(2k − 1)θ(sin2 θ + sin2(2k − 1)θ)

cos4 kθ cos4(k − 1)θ

}

,
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respectively. With Q = b(N − 1)/2c, as in the problem statement, sums c) and d) are given
by

P1(N) = P1(θ; q)
∣

∣

∣

θ=π/N,q=Q
and R1(N) = R1(θ, q)

∣

∣

∣

θ=π/N,q=Q
. (15)

Using (12) and (13) into (14) then gives, with the help of (15):

P1(N) = csc
π

N

(

(Q+ 1) tan2
Qπ

N
−

Q
∑

k=1

tan2
kπ

N

)

;

(16)

R1(N) = 2 csc
π

N

(

(Q+ 1) tan4 Qπ

N
−

Q
∑

k=1

tan4
kπ

N

)

.

We finally find
∑Q

k=1 tan
2m kπ

N for m = 1, 2, by invoking the general results obtained in [1].
According to equation (31) of [1],

Q
∑

k=1

tan2m
kπ

N
=

m
∑

r=0

(−1)m−r

(

m

r

)

S2r(N), m = 1, 2, 3, . . .

where

S2r(N) =

Q
∑

k=1

sec2r
kπ

N
, r ≥ 0.

For r = 0, we have

S0(N) = Q,

and for r = 1 we have, from (26) and (27) of [1]:

Sr(N) =

{
∑r

k=1 ak,r(N
2k − 22k) r ≥ 1 N even,

∑r
k=1(2

2k − 1)ak,r(N
2k − 1) r ≥ 1 N odd.

The ak,r coefficients that appear in these expressions are calculated as shown in [1]. For the

cases of interest here, we need a1,1 = 1
6 , a1,2 = 1

9 , and a2,2 = 1
90 (see second Table, p. 271 of

[1]). These values give:
For N even,

S0(N) =
N − 2

2
, S2(N) = a1,1(N

2 − 4) =
(N − 2)(N + 2)

6
,

S4(N) = a1,2(N
2 − 4) + a2,2(N

4 − 16) =
(N − 2)(N + 2)(N2 + 14)

90
.

For N odd,

S0(N) =
N − 1

2
, S2(N) = 3a1,1(N

2 − 1) =
(N − 1)(N + 1)

2
,

S4(N) = 3a1,2(N
2 − 1) + 15a2,2(N

4 − 1) =
(N − 1)(N + 1)(N2 + 3)

6
.
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Terms are arranged to highlight common factors. Next collect terms and factorize to get

Q
∑

k=1

tan2
kπ

N
= S2(N)− S0(N) =

{

(N−1)(N−2)
6 N even,

N(N−1)
2 N odd,

Q
∑

k=1

tan4
kπ

N
= S4(N)− 2S2(N) + S0(N) =

{

(N−1)(N−2)(N2+3N−13)
90 N even,

N(N−1)(N2+N−3)
6 N odd.

These results can now be inserted in (16) to provide the sought closed forms and we find:

P1(N) =







csc π
N

(

N
2 tan2 (N−2)π

2N − (N−1)(N−2)
6

)

N even,

csc π
N

(

N+1
2 tan2 (N−1)π

2N − N(N−1)
2

)

N odd,

R1(N) =







2 csc π
N

(

N
2 tan4 (N−2)π

2N − (N−1)(N−2)(N2+3N−13)
90

)

N even,

2 csc π
N

(

N+1
2 tan4 (N−1)π

2N − N(N−1)(N2+N−3)
6

)

N odd.

This completes the proof of the problem.
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Also solved by Paul S. Bruckman.

Errata: In the solution to H-690, the expression

(−1)k(m+1)
n
∑

k=1







F 2m
k Lm +

bm/2c
∑

i=1

i
∑

r=1

m

i

(

m− i− 1

i− 1

)(

i

r

)

(−1)krF
2(m−r)
k







should be

n
∑

k=1







(−1)k(m+1)F 2m
k Lm +

bm/2c
∑

i=1

i
∑

r=1

m

i

(

m− i− 1

i− 1

)(

i

r

)

(−1)k(m+r+1)F
2(m−r)
k







.
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