ADVANCED PROBLEMS AND SOLUTIONS

EDITED BY
FLORIAN LUCA

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG X3, WITS 2050, JOHANNESBURG, SOUTH AFRICA or by e-mail at the address florian.luca@wits.ac.za as files of the type tex, dvi, ps, doc, html, pdf, etc. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, all solutions sent by regular mail should be submitted on separate signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

H-817 Proposed by Hideyuki Ohtsuka, Saitama, Japan

For $n \geq 1$, find closed form expressions for the sums
(i) $\sum_{k=1}^{n} F_{2^{k}} F_{2^{k}-1} F_{2^{k+1}-1} \cdots F_{2^{n}-1}$;
(ii) $\sum_{k=1}^{n} F_{2^{k}-3} L_{2^{k}-1} L_{2^{k+1}-1} \cdots L_{2^{n}-1}$;
(iii) $\sum_{k=1}^{n}(-1)^{k} F_{2^{k}} L_{2^{k}-1} L_{2^{k+1}-1} \cdots L_{2^{n}-1}$;
(iv) $\sum_{k=1}^{n}(-1)^{k} G_{2^{k}+k} L_{2^{k}-1} L_{2^{k+1}-1} \cdots L_{2^{n}-1}$,
where $\left\{G_{n}\right\}_{n \geq 1}$ satisfies $G_{n+2}=G_{n+1}+G_{n}$ for $n \geq 1$ with arbitrary G_{1} and G_{2}.
H-818 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Determine

$$
\sum_{n=1}^{\infty} \frac{1}{F_{n} F_{n+1} F_{n+2} F_{n+4}} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{1}{F_{n} F_{n+2} F_{n+3} F_{n+4}} .
$$

THE FIBONACCI QUARTERLY

H-819 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai

 Stanciu, Buzău, RomaniaLet $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous and odd function and $g: \mathbb{R}_{+}^{*} \longrightarrow \mathbb{R}$ be a continuous function such that $g(1 / x)=-g(x)$ for all $x \in \mathbb{R}_{+}^{*}$. Compute

$$
\int_{-\beta}^{\alpha} \frac{d x}{\left(1+x^{2}\right)\left(1+e^{(f \circ g)(x)}\right)},
$$

where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$.

H-820 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai

Stanciu, Buzău, Romania
If $a, b, c \in \mathbb{R}_{+}$, compute

$$
\lim _{n \rightarrow \infty} \frac{\left(\sqrt[n+1]{(2 n+1)!!F_{n+1}^{b}}\right)^{a+1}-\left(\sqrt[n]{(2 n-1)!!F_{n}^{b}}\right)^{a+1}}{\left(\sqrt[n]{n!L_{n}^{c}}\right)^{a}}
$$

SOLUTIONS

Closed forms for sums of series involving reciprocals of shifted Fibonacci squares

H-783 Proposed by Hideyuki Ohtsuka, Saitama, Japan (Vol. 54, No. 1, February 2016)

Prove that
(i) $\sum_{n=1}^{\infty} \frac{1}{F_{n}^{2}+1}=\frac{-3+5 \sqrt{5}}{6}$;
(ii) $\sum_{n=3}^{\infty} \frac{1}{F_{n}^{2}-1}=\frac{43-15 \sqrt{5}}{18}$;
(iii) $\sum_{n=3}^{\infty} \frac{1}{F_{n}^{4}-1}=\frac{35-15 \sqrt{5}}{18}$.

Solution by Ángel Plaza

(i) We will show that $\sum_{n=0}^{\infty} \frac{1}{F_{2 n}^{2}+1}=\alpha=\frac{1+\sqrt{5}}{2}$, and that $\sum_{n=0}^{\infty} \frac{1}{F_{2 n+1}^{2}+1}=\frac{\sqrt{5}}{3}$. These two series are consequences of the following two identities that may be proved by induction:

$$
\sum_{n=0}^{m} \frac{1}{F_{2 n}^{2}+1}=\frac{F_{2 m+2}}{F_{2 m+1}}, \quad \sum_{n=0}^{m} \frac{1}{F_{2 n+1}^{2}+1}=\frac{F_{4 m+4} / 3}{F_{2 m+1} F_{2 m+3}}
$$

Therefore, the sum proposed in (i) is

$$
\sum_{n=1}^{\infty} \frac{1}{F_{n}^{2}+1}=\sum_{n=1}^{\infty} \frac{1}{F_{2 n}^{2}+1}+\sum_{n=0}^{\infty} \frac{1}{F_{2 n+1}^{2}+1}=\alpha-1+\frac{\sqrt{5}}{3}=\frac{-3+5 \sqrt{5}}{6}
$$

(ii) Since $\frac{1}{F_{n}^{4}-1}=\frac{1 / 2}{F_{n}^{2}-1}-\frac{1 / 2}{F_{n}^{2}+1}$, then

$$
\begin{aligned}
\sum_{n=3}^{\infty} \frac{1}{F_{n}^{2}-1} & =2 \sum_{n=3}^{\infty} \frac{1}{F_{n}^{4}-1}+\sum_{n=3}^{\infty} \frac{1}{F_{n}^{2}+1} \\
& =\frac{35-15 \sqrt{5}}{18}+\frac{-3+5 \sqrt{5}}{6}-1 \\
& =\frac{43-15 \sqrt{5}}{18}
\end{aligned}
$$

where we have used the sum given in (iii), which is proved below.
(iii) First, note that $F_{n}^{4}-1=F_{n-2} F_{n-1} F_{n+1} F_{n+2}$ and that $F_{n}=\frac{F_{n+2}+F_{n-2}}{3}$. Therefore,

$$
\frac{1}{F_{n}^{4}-1}=\frac{1 / 3}{F_{n-2} F_{n-1} F_{n} F_{n+1}}+\frac{1 / 3}{F_{n-1} F_{n} F_{n+1} F_{n+2}} .
$$

Taking into account the following relation equation (24) in [1]:

$$
\sum_{i=1}^{n-1} \frac{1}{F_{i} F_{i+1} F_{i+2} F_{i+3}}=\frac{7}{4}-\frac{1}{2}\left(\frac{F_{n-1}}{F_{n}}+\frac{3 F_{n}}{F_{n+1}}+\frac{F_{n+1}}{F_{n+2}}\right)
$$

it is deduced that

$$
\begin{aligned}
& \sum_{n=3}^{\infty} \frac{1 / 3}{F_{n-2} F_{n-1} F_{n} F_{n+1}}=\frac{1}{3}\left(\frac{7}{4}-\frac{5}{2 \alpha}\right) \\
& \sum_{n=3}^{\infty} \frac{1 / 3}{F_{n-1} F_{n} F_{n+1} F_{n+2}}=\frac{1}{3}\left(\frac{7}{4}-\frac{5}{2 \alpha}-\frac{1}{6}\right),
\end{aligned}
$$

from where the sum (iii) follows.
[1] R. S. Melham, Finite sums that involve reciprocal of products of generalized Fibonacci numbers, Integers, 13.4 (2013), A40.

Also solved by Brian Bradie, Dmitry Fleischman, and the proposer.

A pair of identities for π

H-784 Proposed by Gleb Glebov, Simon Fraser University, Canada (Vol. 54, No. 1, February 2016)

Prove that
(i) $\sum_{k=1}^{\infty}\left[\frac{1}{24 k+11}-\frac{1}{24 k-11}+\frac{1}{24 k+1}-\frac{1}{24 k-1}\right]=\frac{\pi(\sqrt{6}+\sqrt{2})}{12}-\frac{12}{11}$;
(ii) $\sum_{k=1}^{\infty}\left[\frac{1}{24 k+7}-\frac{1}{24 k-7}+\frac{1}{24 k+5}-\frac{1}{24 k-5}\right]=\frac{\pi(\sqrt{6}-\sqrt{2})}{12}-\frac{12}{35}$.

Solution by Hideyuki Ohtsuka

It is known that

$$
\pi x \cot \pi x=1-\sum_{k=1}^{\infty} \frac{2 x^{2}}{k^{2}-x^{2}} .
$$

THE FIBONACCI QUARTERLY

From the above identity, we have

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{(24 k)^{2}-(24 x)^{2}}=\frac{1-\pi x \cot \pi x}{2(24 x)^{2}} \tag{1}
\end{equation*}
$$

(i) Note that

$$
\cot \frac{11 \pi}{24}=-2+\sqrt{2}-\sqrt{3}+\sqrt{6} \quad \text { and } \quad \cot \frac{\pi}{24}=2+\sqrt{2}+\sqrt{3}+\sqrt{6} .
$$

We have

$$
\begin{aligned}
\text { LHS } & =-22 \sum_{k=1}^{\infty} \frac{1}{(24 k)^{2}-11^{2}}-2 \sum_{k=1}^{\infty} \frac{1}{(24 k)^{2}-1^{2}} \\
& =-\frac{22}{2 \times 11^{2}}\left(1-\frac{11 \pi}{24} \cot \frac{11 \pi}{24}\right)-\frac{2}{2 \times 1^{2}}\left(1-\frac{\pi}{24} \cot \frac{\pi}{24}\right) \\
& =-\frac{1}{11}+\frac{\pi}{24}(-2+\sqrt{2}-\sqrt{3}+\sqrt{6})-1+\frac{\pi}{24}(2+\sqrt{2}+\sqrt{3}+\sqrt{6}) \\
& =\text { RHS. }
\end{aligned}
$$

. (ii) Note that

$$
\cot \frac{7 \pi}{24}=-2-\sqrt{2}+\sqrt{3}+\sqrt{6} \quad \text { and } \quad \cot \frac{5 \pi}{24}=2-\sqrt{2}-\sqrt{3}+\sqrt{6}
$$

We have

$$
\begin{aligned}
\text { LHS } & =-14 \sum_{k=1}^{\infty} \frac{1}{(24 k)^{2}-7^{2}}-10 \sum_{k=1}^{\infty} \frac{1}{(24 k)^{2}-5^{2}} \\
& =-\frac{14}{2 \times 7^{2}}\left(1-\frac{7 \pi}{24} \cot \frac{7 \pi}{24}\right)-\frac{10}{2 \times 5^{2}}\left(1-\frac{5 \pi}{24} \cot \frac{5 \pi}{24}\right) \\
& =-\frac{1}{7}+\frac{\pi}{24}(-2-\sqrt{2}+\sqrt{3}+\sqrt{6})-\frac{1}{5}+\frac{\pi}{24}(2-\sqrt{2}-\sqrt{3}+\sqrt{6}) \\
& =\text { RHS. }
\end{aligned}
$$

Also solved by Brian Bradie, Kenneth B. Davenport, Dmitry Fleischman, David Terr, Nicussor Zlota, and the proposer.

Sums of Fibonomial coefficients

H-785 Proposed by Hideyuki Ohtsuka, Saitama, Japan (Vol. 54, No. 1, February 2016)

Let $\binom{n}{k}_{F}$ denote the Fibonomial coefficient. For $m \geq n \geq 1$, find closed forms expressions for the sums
(i) $\sum_{k=0}^{n} F_{2 k}\binom{2 n}{n+k}_{F}\binom{2 m}{m+k}_{F}$;
(ii) $\sum_{k=0}^{n} F_{2 k}\binom{2 n}{n+k}_{F}^{-1}\binom{2 m}{m+k}_{F}^{-1}$.

Solution by the proposer

It is known that

$$
\begin{equation*}
F_{a+r} F_{b+r}-(-1)^{r} F_{a} F_{b}=F_{a+b+r} F_{r} \quad(\text { see }[1](20 a)) \tag{2}
\end{equation*}
$$

Putting $a=s-k, b=t-k$, and $r=2 k$ in the above identity, we have

$$
\begin{equation*}
F_{s+k} F_{t+k}-F_{s-k} F_{t-k}=F_{s+t} F_{2 k} \tag{3}
\end{equation*}
$$

(i) We have

$$
\begin{aligned}
& \binom{2 n-1}{n+k-1}_{F}\binom{2 m-1}{m+k-1}_{F}-\binom{2 n-1}{n+k}_{F}\binom{2 m-1}{m+k}_{F} \\
= & \frac{F_{n+k}}{F_{2 n}}\binom{2 n}{n+k}_{F} \frac{F_{m+k}}{F_{2 m}}\binom{2 m}{m+k}_{F}-\frac{F_{n-k}}{F_{2 n}}\binom{2 n}{n+k}_{F} \frac{F_{m-k}}{F_{2 m}}\binom{2 m}{m+k}_{F} \\
= & \frac{F_{n+k} F_{m+k}-F_{n-k} F_{m-k}}{F_{2 n} F_{2 m}}\binom{2 n}{n+k}_{F}\binom{2 m}{m+k}_{F} \\
= & \frac{F_{n+m} F_{2 k}}{F_{2 n} F_{2 m}}\binom{2 n}{n+k}_{F}\binom{2 m}{m+k}_{F} \quad(\text { by }(3)) .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \sum_{k=0}^{n} F_{2 k}\binom{2 n}{n+k}_{F}\binom{2 m}{m+k}_{F} \\
= & \frac{F_{2 n} F_{2 m}}{F_{n+m}} \sum_{k=0}^{n}\left[\binom{2 n-1}{n+k-1}_{F}\binom{2 m-1}{m+k-1}_{F}-\binom{2 n-1}{n+k}_{F}\binom{2 m-1}{m+k}_{F}\right] \\
= & \frac{F_{2 n} F_{2 m}}{F_{n+m}}\left[\binom{2 n-1}{n-1}_{F}\binom{2 m-1}{m-1}_{F}-\binom{2 n-1}{2 n}_{F}\binom{2 m-1}{m+n}_{F}\right] \\
= & \frac{F_{2 n} F_{2 m}}{F_{n+m}} \times \frac{F_{n}}{F_{2 n}}\binom{2 n}{n}_{F} \frac{F_{m}}{F_{2 m}}\binom{2 m}{m}_{F}=\frac{F_{n} F_{m}}{F_{n+m}}\binom{2 n}{n}_{F}\binom{2 m}{m}_{F} .
\end{aligned}
$$

(ii) We have

$$
\begin{aligned}
& \binom{2 n+1}{n+k+1}_{F}^{-1}\binom{2 m+1}{m+k+1}_{F}^{-1}-\binom{2 n+1}{n+k}_{F}^{-1}\binom{2 m+1}{m+k}_{F}^{-1} \\
= & \frac{F_{n+k+1}}{F_{2 n+1}}\binom{2 n}{n+k}_{F}^{-1} \frac{F_{m+k+1}}{F_{2 m+1}}\binom{2 m}{m+k}_{F}^{-1}-\frac{F_{n-k+1}}{F_{2 n+1}}\binom{2 n}{n+k}_{F}^{-1} \frac{F_{m-k+1}}{F_{2 m+1}}\binom{2 m}{m+k}_{F}^{-1} \\
= & \frac{F_{n+k+1} F_{m+k+1}-F_{n+1-k} F_{m+1-k}}{F_{2 n+1} F_{2 m+1}}\binom{2 n}{n+k}_{F}^{-1}\binom{2 m}{m+k}_{F}^{-1} \\
= & \frac{F_{n+m+2} F_{2 k}}{F_{2 n+1} F_{2 m+1}}\binom{2 n}{n+k}_{F}^{-1}\binom{2 m}{m+k}_{F}^{-1} \quad(\text { by }(3)) .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \sum_{k=0}^{n} F_{2 k}\binom{2 n}{n+k}_{F}^{-1}\binom{2 m}{m+k}_{F}^{-1} \\
= & \frac{F_{2 n+1} F_{2 m+1}}{F_{n+m+2}} \sum_{k=0}^{n}\left[\binom{2 n+1}{n+k+1}_{F}^{-1}\binom{2 m+1}{m+k+1}_{F}^{-1}-\binom{2 n+1}{n+k}_{F}^{-1}\binom{2 m+1}{m+k}_{F}^{-1}\right] \\
= & \frac{F_{2 n+1} F_{2 m+1}}{F_{n+m+2}}\left[\binom{2 n+1}{2 n+1}_{F}^{-1}\binom{2 m+1}{m+n+1}_{F}^{-1}-\binom{2 n+1}{n}_{F}^{-1}\binom{2 m+1}{m}_{F}^{-1}\right] \\
= & \frac{F_{2 n+1} F_{2 m+1}}{F_{n+m+2}}\left[\frac{F_{m+n+1}}{F_{2 m+1}}\binom{2 m}{m+n}_{F}^{-1}-\frac{F_{n+1}}{F_{2 n+1}}\binom{2 n}{n}_{F}^{-1} \frac{F_{m+1}}{F_{2 m+1}}\binom{2 m}{m}_{F}^{-1}\right] \\
= & \frac{F_{2 n+1} F_{n+m+1}}{F_{n+m+2}}\binom{2 m}{n+m}_{F}^{-1}-\frac{F_{n+1} F_{m+1}}{F_{n+m+2}}\binom{2 n}{n}_{F}^{-1}\binom{2 m}{m}_{F}^{-1} .
\end{aligned}
$$

Note: Similarly, for positive integers n and r we obtain

$$
\sum_{k=0}^{n} F_{2 k}\binom{n}{r+k}_{F}\binom{n}{r-k}_{F}=\frac{F_{r} F_{n-r}}{F_{n}}\binom{n}{r}_{F}^{2}
$$

[1] S. Vajda, Fibonacci and Lucas numbers and the golden section, Dover, 2008.

The area of a Fibonacci polygon

H-786 Proposed by Atara Shriki, Oranim College of Education (Vol. 54, No. 1,

 February 2016)Assume that the consecutive numbers in the Fibonacci sequence are the coordinates of a polygon's vertices in the Cartesian coordinate system, counterclockwise:

$$
A_{1}\left(F_{1}, F_{2}\right) ; A_{2}\left(F_{3}, F_{4}\right) ; A_{3}\left(F_{5}, F_{6}\right) ; A_{4}\left(F_{7}, F_{8}\right) ; \ldots ; A_{n}\left(F_{2 n-1}, F_{2 n}\right)
$$

What is the area of such a polygon?

Solution by Virginia Johnson

One formula for area bounded by a polygon with coordinates with vertices at $P_{1}\left(x_{1}, y_{1}\right)$, $P_{2}\left(x_{2}, y_{2}\right), \ldots, P_{n}\left(x_{n}, y_{n}\right)$ is the so called shoelace formula or surveyor's formula, given by the absolute value of

$$
\frac{1}{2}\left(x_{1} y_{2}+x_{2} y_{3}+\cdots+x_{n-1} y_{n}+x_{n} y_{1}-y_{1} x_{2}-y_{2} x_{3}-\cdots-y_{n-1} x_{n}-y_{n} x_{1}\right)
$$

See reference [1].
Taking the vertices in counterclockwise order, the area of the polygons is

$$
\begin{aligned}
A=\frac{1}{2}\left(F_{1} F_{2 n}\right. & +F_{2 n-1} F_{2 n-2}+F_{2 n-3} F_{2 n-4}+\cdots+F_{5} F_{4}+F_{3} F_{2} \\
& \left.-F_{2} F_{2 n-1}-F_{2 n} F_{2 n-3}-F_{2 n-2} F_{2 n-5}-\cdots-F_{6} F_{3}-F_{4} F_{1}\right)
\end{aligned}
$$

Reordering the terms, we have

$$
\begin{align*}
A=\frac{1}{2} & \left(\left(F_{1} F_{2 n}-F_{2} F_{2 n-1}\right)+\left(F_{2 n-1} F_{2 n-2}-F_{2 n} F_{2 n-3}\right)\right. \tag{4}\\
& \left.+\left(F_{2 n-3} F_{2 n-4}-F_{2 n-2} F_{2 n-5}\right)+\cdots+\left(F_{5} F_{4}-F_{6} F_{3}\right)+\left(F_{3} F_{2}-F_{4} F_{1}\right)\right) .
\end{align*}
$$

Note that after the first pair, each of the subsequent $(n-1)$ pairs have the form $F_{2 j-1} F_{2 j-2}-$ $F_{2 j} F_{2 j-3}$. Using an identity from Everman, et al. [2]:

$$
F_{n+k} F_{n+h}-F_{n} F_{n+h+k}=(-1)^{n} F_{h} F_{k},
$$

we have that equation (4) reduces to

$$
A=\frac{F_{1} F_{2 n}-F_{2} F_{2 n-1}-1(n-1)}{2}=\frac{F_{2 n}-F_{2 n-1}-n+1}{2}=\frac{F_{2 n-2}-n+1}{2} .
$$

Therefore, the area of the polygon is $\frac{F_{2 n-2}-n+1}{2}$.
[1] B. Braden, The surveyor's area formula, The College Mathematics Journal, 17.4 (1986), 326-337.
[2] D. Everman, A. Danese, K. Venkannayah, and E. Scheuer, Elementary problems and solutions: Some properties of Fibonacci numbers, The American Mathematical Monthly, 67.7 (1960), 694.

Also solved by Harris Kwong, Ángel Plaza, and the proposer.

Errata: In the statement of $\mathbf{H - 8 1 5}$, the condition " $p>5$ " must be added.
Withdrawals: Problem $\mathbf{H - 8 1 6}$ is withdrawn as being a particular case of $\mathbf{B - 1 1 7 3}$.

