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PROBLEMS PROPOSED IN THIS ISSUE

H-833 Proposed by Robert Frontczak, Stuttgart, Germany
The Tribonacci-Lucas numbers {Kn}n≥0 satisfy K0 = 3, K1 = 1, K2 = 3, and Kn =

Kn−1 +Kn−2 +Kn−3 for n ≥ 3. Prove that for any n ≥ 1
n∑

j=1

K2jK2j+1 =
1

4
((K2n +K2n+1)

2 − 16).

H-834 Proposed by Robert Frontczak, Stuttgart, Germany
Let {Bn}n∈Z and {Cn}n∈Z denote the balancing and Lucas-balancing numbers, respectively,

given by
Bn+1 = 6Bn −Bn−1 and Cn+1 = 6Cn − Cn−1 for all n ≥ 1,

with B0 = 0, B1 = 1, C0 = 1, and C1 = 3. Prove that for integers n ≥ 1 and j ≥ 0

(i)
∑n

k=1Ck∓jBk±j = 1
32(C2n+1 − 3)± n

2B2j ;

(ii)
∑n

k=1Ck−jCk+jBk−jBk+j = 1
768(B4n+2 − 6(2n+ 1))− n

4B
2
2j .

H-835 Proposed by Andrei K. Svinin and Svetlana V. Svinina, Matrosov Institute
for System Dynamics and Control Theory of SB RAS, Russia

Let B
(k)
q be the higher order Bernoulli numbers that are defined by an exponential generating

function as
tk

(et − 1)k
=
∑
q≥0

B
(k)
q

q!
tq.

Prove that

B(k)
n =

n∑
q=1

s(q + k, k)(
q+k
k

) S(n, q),

where s(n, k) and S(n, k) are the Stirling numbers of the first and second type, respectively.
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H-836 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Given a real number p > 0, define the sequence {Sn}n≥0 by

S0 = p, Sn = S2
n−1 + p for n ≥ 1.

For any integer n ≥ 0, find closed form expressions for the sums

(i)

n∑
k=0

SkSk+1 · · ·Sn and (ii)

n∑
k=0

(SkSk+1 · · ·Sn)2.

SOLUTIONS

A forgotten problem

H-500 Proposed by H.-J. Seiffert, Berlin, Germany
(Vol. 33, No. 4, August 1995)

Define the Fibonacci polynomials by F0(x) = 0, F1(x) = 1, and Fn(x) = xFn−1(x)+Fn−2(x)
for n ≥ 2. Show that for all complex numbers x and all nonnegative integers n,

bn/2c∑
k=0

(
2n+ 2

n− 2k

)
F2k+1(x) = xnFn+1(4/x), (1)

where b c denotes the greatest integer function. As special cases, we obtain the following
identities

bn/2c∑
k=0

(
2n+ 2

n− 2k

)
F2k+1 =

1

2
F3n+3;

bn/2c∑
k=0

(
2n+ 2

n− 2k

)
F6k+3 = 22n+1Fn+1;

bn/2c∑
k=0

(
2n+ 2

n− 2k

)
L4k+2 =

1

2
(5n+1 − (−1)n+1).

Solution by Ulrich Abel and Vitaliy Kushnirevych

The recursive formula Fn (x) = xFn−1 (x) + Fn−2 (x) with F0 (x) = 0, F1 (x) = 1 of the
Fibonacci polynomials Fn (x) yields the generating function

∞∑
n=0

Fn (x) zn =
z

1− xz − z2
,

which implies the well-known explicit representation

Fn+1 (x) =

bn/2c∑
j=0

(
n− j
j

)
xn−2j .
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We have
bn/2c∑
k=0

(
2n+ 2

n− 2k

)
F2k+1 (x) =

bn/2c∑
k=0

(
2n+ 2

n− 2k

) k∑
j=0

(
2k − j
j

)
x2k−2j

=
∞∑
k=0

(
2n+ 2

n+ 2 + 2k

) k∑
j=0

(
k + j

k − j

)
x2j

=

∞∑
j=0

x2j
∞∑
k=j

(
2n+ 2

n+ 2 + 2k

)(
k + j

k − j

)
.

As usual, for a formal power series, we write [zn]
∑∞

n=0 anz
n to denote the coefficient an of zn.

Noting that (
2n+ 2

n+ 2 + 2k

)
=

(
2n+ 2

n− 2k

)
= [zn]

z2k

(1− z)2k+n+3
,

we see that the inner sum is equal to

[zn]

∞∑
k=0

(
k + 2j

k

)
z2k+2j

(1− z)2k+2j+n+3
= [zn]

z2j

(1− z)2j+n+3

(
1− z2

(1− z)2

)−(2j+1)

=
[
zn−2j

] 1

(1− z)n+2 (1− 2z)2j+1
.

Application of the Lagrange inversion

[zn] [F (w) | w = zϕ (w)] = [zn]
[
F (z)ϕn−1 (z)

(
ϕ (z)− zϕ′ (z)

)]
,

with ϕ (z) = 1/ (1− z) and F (z) = 1/ (1− 2z)2j+2 yields[
zn−2j

] 1

(1− z)n+2 (1− 2z)2j+1
=

[
zn−2j

]
[F (w) | w = z/ (1− w)]

=
[
zn−2j

] 1(
∓
√

1− 4z
)2j+2

=
[
zn−2j

] 1

(1− 4z)j+1

= 4n−2j
(
n− j
j

)
.

This implies the desired identity because the right side is equal to

xnFn+1 (4/x) = xn
bn/2c∑
j=0

(
n− j
j

)
(4/x)n−2j =

bn/2c∑
j=0

(
n− j
j

)
4n−2jx2j .

This proves (1).

Some divisibility relations with members of Lucas sequences

H-801 Proposed by Refik Keskin, Sakarya University, Turkey and Florian Luca,
University of the Witwatersrand, Johannesburg, South Africa (Vol. 55, No. 1,
February 2017)

Let P ≥ 3 be an integer and (Vn)n≥0 be the sequence given by V0 = 2, V1 = P , and
Vn+2 = PVn+1 − Vn for n ≥ 0. Assume that 3 - n. Show that:

(i) P + 1 | Vn + 1;
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(ii) If Vn + 1 = (P + 1)F (P ), then F (−1) = n if n ≡ 1 (mod 3) and F (−1) = −n if n ≡ 2
(mod 3).

Solution by Eduardo H. M. Brietzke

Consider the generating function

g(x) :=
∞∑
n=0

Vnx
n =

2− Px
1− Px+ x2

.

We have

f(x) :=

∞∑
n=0

(Vn + 1)xn =
2− Px

1− Px+ x2
+

1

1− x
=

3− 2(P + 1)x+ (P + 1)x2

1− (P + 1)x+ (P + 1)x2 − x3
.

Let ω := e
2πi
3 = −1

2 + i
√
3
2 . Then,

∞∑
n=0

V3n+1x
3n+1 =

f(x) + ω2f(ωx) + ωf(ω2x)

3
= (P + 1)xh(x, P ),

where

h(x, P ) :=
1− (P 2 − 2)x3 + (P − 1)x6

1− (P 3 − 3P + 1)x3 + (P 3 − 3P + 1)x6 − x9
(The above calculation can be done by hand or by using a symbolic calculation package). Set

∞∑
n=0

Fn(P )xn := xh(x, P ).

It is easy to check that
∞∑
n=0

Fn(−1)xn = xh(x,−1) =
x(1 + x3 − 2x6)

(1− x3)3
=
∞∑
n=0

(3n+ 1)x3n+1. (2)

The last equality follows from the expansion

1

(1− x)3
=

∞∑
n=0

(n+ 2)(n+ 1)

2
xn,

from which it follows that

1 + x− 2x2

(1− x)3
=
∞∑
n=0

(n+ 2)(n+ 1)

2
xn +

∞∑
n=0

(n+ 1)n

2
xn + 2

∞∑
n=0

n(n− 1)

2
xn

=

∞∑
n=0

(3n+ 1)xn.

Equality (2) proves that if n ≡ 1 (mod 3), then P + 1 | Vn + 1 and Vn + 1 = n(P + 1).

The case n ≡ 2 (mod 3) is similar. We have
∞∑
n=0

V3n+2x
3n+2 =

f(x) + ωf(ωx) + ω2f(ω2x)

3
= (P + 1)x2k(x, P ),

with

k(x, P ) :=
(P − 1)− (P 2 − 2)x3 + x6

1− (P 3 − 3P + 1)x3 + (P 3 − 3P + 1)x6 − x9
.
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Set
∞∑
n=0

Gn(P )xn := x2k(x, P ).

Then,

x2k(x,−1) =
x2(−2 + x3 + x6)

(1− x3)3
= −

∞∑
n=0

(3n+ 2)x3n+2.

Hence, if n ≡ 2 (mod 3), then Vn + 1 = −n(P + 1).

Also solved by Dmitry G. Fleischman and the proposers.

An inequality with Fibonacci numbers

H-802 Proposed by Hideyuki Ohtsuka, Saitama, Japan (Vol. 55, No. 1, February
2017)

Let a, b, c, d be positive integers such that a ≥ b, c ≥ d, and b and d have the same parity.
Then for all integers n ≥ 1, prove that(

n∑
k=1

FFk+aFLk+c

)(
n∑

k=1

FFk+bFLk+d

)
≥

(
n∑

k=1

FFk+aFLk+d

)(
n∑

k=1

FFk+bFLk+c

)
.

Solution by the proposer

For n = 1, the inequality clearly holds. Let n ≥ 2. We use the following identity. For
s+ t = u+ v,

FsFt − FuFv = (−1)r(Fs−rFt−r − Fu−rFv−r) (3)

(see [1]). Using the Binet-Cauchy inequality, we have

LS −RS =
∑

1≤i<j≤n
(FFi+aFFj+b − FFj+aFFi+b)(FLi+cFLj+d − FLj+cFLi+d)

=
∑

1≤i<j≤n
(−1)Fi+bFa−bFFj−Fi · (−1)Li+dFc−dFLj−Li by (3)

=
∑

1≤i<j≤n
(−1)Fi+Li(−1)b+dFa−bFc−dFFj−FiFLj−Li ≥ 0.

[1] R. C. Johnson, Fibonacci numbers and matrices,
http://www.dur.ac.uk/bob.johnson/fibonacci/

Also partially solved by Dmitry G. Fleischman.

The area of a polygon with Lucas number coordinates

H-803 Proposed by Ángel Plaza, Gran Canaria, Spain
(Vol. 55, No. 1, February 2017)

Assume that the consecutive numbers in the Lucas sequence are coordinates of the vertices
of a polygon labeled counterclockwise in the Cartesian system:

A1(L1, L2); A2(L3, L4); A3(L5, L6); . . . ; An(L2n−1, L2n).

What is the area of such a polygon?

Solution by the proposer
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Since the polygon’s vertices in the Cartesian coordinate system are counterclockwise, we
may apply the Shoelace formula [1]. That is: if the vertices of a simple polygon, listed
counterclockwise around the perimeter, are (x0, y0), (x1, y1), . . ., (xn−1, yn−1), the area of the
polygon is

A =
1

2

∣∣∣∣∣∣∣∣ x0 x1
y0 y1

∣∣∣∣+

∣∣∣∣ x1 x2
y1 y2

∣∣∣∣+ · · ·+
∣∣∣∣ xn−2 xn−1
yn−2 yn−1

∣∣∣∣+

∣∣∣∣ xn−1 x0
yn−1 y0

∣∣∣∣∣∣∣∣ .
Our case reads as

A =
1

2

∣∣∣∣∣∣∣∣ L1 L3

L2 L4

∣∣∣∣+

∣∣∣∣ L3 L5

L4 L6

∣∣∣∣+ · · ·+
∣∣∣∣ L2n−3 L2n−1
L2n−2 L2n

∣∣∣∣+

∣∣∣∣ L2n−1 L1

L2n L2

∣∣∣∣∣∣∣∣
=

5F2n−2 − 5(n− 1)

2
,

where the last identity follows since for k = 2, . . . , n we have∣∣∣∣ L2k−3 L2k−1
L2k−2 L2k

∣∣∣∣ = L4k−3 − L3 − L4k−3 − L1 = −5

and for the last determinant∣∣∣∣ L2n−1 1
L2n 3

∣∣∣∣ = 3L2n−1 − L2n = 5F2n−2.

�

[1] B. Braden, The surveyor’s area formula, The College Mathematics Journal, 17(4) (1986),
326–337.

Also solved by Dmitry G. Fleischman, Wei-Kai Lai and John Risher (jointly),
Jason Smith and David Terr.

Sums of reciprocals of products of Lucas numbers

H-804 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 55, No. 1, February 2017)

Prove that

(i)

∞∑
n=1

1

αn(n−3)L2L4L6 · · ·L2n
= 1;

(ii)
∞∑
n=1

1

α2Fn−1L2F1L2F2L2F3 · · ·L2Fn

=
1

α2
;

(iii)

∞∑
n=1

1

α2Ln−1L2L1L2L2L2L3 · · ·L2Ln

=
1

α6
.

Solution by the proposer

We need the following lemma.
Lemma For all positive integer sequences {an}n≥1, putting Sn =

∑n
i=1 ai, we have

∞∑
n=1

(−1)Sn+an

αSn−2anLa1La2 · · ·Lan

= 1.
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Proof. Let bn = (−α2)an + 1. We have
m∑

n=1

bn − 1

b1b2 · · · bn
=

b1 − 1

b1
+

m∑
n=2

(
1

b1b2 · · · bn−1
− 1

b1b2 · · · bn

)
= 1− 1

b1
+

1

b1
− 1

b1b2 · · · bm
→ 1 (as m→∞).

Therefore, we have

1 =

∞∑
n=1

(−α2)an∏n
i=1((−α2)ai + 1)

=

∞∑
n=1

(−α2)an∏n
i=1(−α)ai

∏n
i=1(α

ai + βai)

=
∞∑
n=1

(−α2)an

(−α)Sn
∏n

i=1 Lai

=
∞∑
n=1

(−1)Sn+an

αSn−2an
∏n

i=1 Lai

.

�

(i) If an = 2n, then we have

Sn − 2an =
n∑

i=1

2i− 4n = n(n+ 1)− 4n = n(n− 3).

By the Lemma, we obtain the desired identity.
(ii) Note that

∑n
i=1 Fi = Fn+2 − 1. If an = 2Fn, then we have

Sn − 2an =
n∑

i=1

2Fi − 2Fn = 2Fn+2 − 2− 4Fn

= 2(Fn+2 − 2Fn)− 2 = 2(Fn+1 − Fn)− 2 = 2Fn−1 − 2.

By the Lemma, we have
∞∑
n=1

1

α2Fn−1−2L2F1L2F2 · · ·L2Fn

= 1.

Therefore, we obtain the desired identity.
(iii) Note that

∑n
i=1 Li = Ln+2 − 3. If an = 2Ln, then we have

Sn − 2an =
n∑

i=1

2Li − 4Ln = 2Ln+2 − 6− 4Ln

= 2(Ln+2 − 2Ln)− 6 = 2(Ln+1 − Ln)− 6 = 2Ln−1 − 6.

By the Lemma, we have
∞∑
n=1

1

α2Ln−1−6L2L1L2L2 · · ·L2Ln

= 1.

Therefore, we obtain the desired identity.

Note: In the same manner, one obtains
∞∑
n=1

(−1)Sn+an+n

αSn−2an(
√

5)nFa1Fa2 · · ·Fan

= 1.

Also partially solved by Dmitry G. Fleishman.
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