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PROBLEMS PROPOSED IN THIS ISSUE

H-805 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

Prove that if n ≥ 2, p ≥ 1 are integers and m ≥ 0, xk > 0 are real numbers for k = 1, . . . , n,
then letting Xn =

∑n
k=1 xk, we have the inequality
n
∑

k=1

(FpXn + Fp+1xk)
m+1

(F 2
p+1Xn − F 2

p xk)
2m+1

≥ (nFp + Fp+1)
m+1nm+1

(nF 2
p+1 − F 2

p )
2m+1Xm

n

.

H-806 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

The two sequences {Tn}n∈Z and {Sn}n∈Z satisfy

Tn+3 = Tn+2 + Tn+1 + Tn with T0 = 0, T1 = T2 = 1,

Sn+3 = Sn+2 + Sn+1 + Sn with S0 = 3, S1 = 1, S2 = 3

for all integers n. For n ≥ 0 prove that
n
∑

k=0

T(−2)kS(−2)k = T2(−2)n .

H-807 Proposed by Mehtaab Sawhney, Commack, NY.

Prove for positive integers n that

n
∑

i=1

⌊n

i

⌋

i
∑

j=1

µ(gcd(i, j)) =

n
∑

k=1

φ(k),

and
n
∑

i=1

n
∑

j=1

µ(gcd(i, j))

⌊√

n

ij

⌋

=

n
∑

k=1

2ω(k).
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H-808 Proposed by Mehtaab Sawhney, Commack, NY.

Prove that
⌊n/2⌋
∑

j=0

(

n

j, j, n − 2j

)

=

⌊n/2⌋
∑

i=0

(−1)i
(

n

i

)(

2n− 1− 3i

n− 1

)

.

SOLUTIONS

An Integral with the Gamma Function and Fibonacci Numbers

H-771 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.
(Vol. 53, No. 2, May 2015)

Let m > 0 and Γ : (0,∞) → (0,∞) be the gamma function. Calculate

lim
n→∞

∫ n+1
√

(n+1)!

n
√
n!

Γ
(x

n
n
√
F

m

n

)

dx.

Solution by Ángel Plaza.

We will show that f is a continuous real function in (a, b) and αm/e ∈ (a, b) then

lim
n→∞

∫ n+1
√

(n+1)!

n
√
n!

f
(x

n
n
√

Fn
m
)

dx =
1

e
f

(

αm

e

)

.

In our case, Γ is a continuous real function in (0,∞) and therefore the required limit is
1

e
Γ

(

αm

e

)

.

Let bn = n+1
√

(n+ 1)!
n
√
Fn

m

n
and an =

n
√
n!

n
√
Fn

m

n
. Then, by the Mean Value Theorem for

integrals,

∫ n+1
√

(n+1)!

n
√
n!

f
(x

n
n
√

Fn
m
)

dx =
n

n
√
Fn

m

∫ bn

an

f(t) dt =
n

n
√
Fn

m (bn − an) f(tn)

for some tn ∈ (an, bn). Now, by the Stirling approximation formula,

ln(n!) = n ln(n)− n+
1

2
ln(n) + ln(

√
2π) +O

(

1

n

)

,

so

ln

(

n
√
n!

n

)

=
lnn!

n
− lnn = −1 +O

(

lnn

n

)

= −1 + o(1)

as n → ∞. Thus, using also the Binet formula for Fn which implies that limn→∞
n
√
Fn = α,

we have

lim
n→∞

bn = lim
n→∞

an = lim
n→∞

tn =
αm

e
.
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By the continuity of f at αm/e, we have

lim
n→∞

n
n
√
Fn

m (bn − an) f(tn) = f

(

αm

e

)

lim
n→∞

( n+1
√

(n+ 1)! − n
√
n!)

= f

(

αm

e

)

lim
n→∞

n
√
n!

n
=

1

e
f

(

αm

e

)

.

Also solved by Dmitry Fleischman, Nicuşor Zlota, and the proposers.

A Geometric Inequality

H-772 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.
(Vol. 53, No. 2, May 2015)

If ABC is a noniscosceles triangle then prove that

∑

cyclic
permutations

a8

(bF 2
n + cF 2

n+1)(a− b)2(a− c)2
>

288r3
√
3

F2n+1
.

Here, a, b, c, r are the lengths of the sides and the radius of the inscribed circle of the triangle
ABC, respectively.

Solution by the proposers.

By the Harald Bergström inequality and F 2
n + F 2

n+1 = F2n+1, we have:

W =
∑

cyclic
permutations

a8

(bF 2
n + cF 2

n+1)(a− b)2(a− c)2

=
∑

cyclic
permutations

(

a4

(a−b)(a−c)

)2

bF 2
n + cF 2

n+1

≥

(

∑

cyclic
permutations

a4

(a−b)(a−c)

)2

∑

cyclic
permutations

(bF 2
n + cF 2

n+1)

=
1

(a+ b+ c)(F 2
n + F 2

n+1)









∑

cyclic
permutations

a4

(a− b)(a− c)









2

=
1

(a+ b+ c)F2n+1









∑

cyclic
permutations

a4

(a− b)(a− c)









2

.

The sum in parentheses simplifies to

∑

cyclic
permutations

a4

(a− b)(a− c)
=

−a4(b− c)− b4(c− a)− c4(a− b)

(a− b)(b− c)(c − a)

= a2 + b2 + c2 + ab+ bc+ ca.
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Since a2 + b2 + c2 ≥ ab+ bc+ ca ≥ 4S
√
3, we get

W ≥ 1

(a+ b+ c)F2n+1
(8S

√
3)2 =

192S2

2pF2n+1
=

192(pr)2

2pF2n+1
=

96pr2

F2n+1
≥ 288r3

√
3

F2n+1
,

where for the last inequality we used the fact that p ≥ 3
√
3r.

Remark. The inequality is strict because ABC is not equilateral.

A Sum with Binomial Coefficients, Fibonacci and Bernoulli Numbers

H-773 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 53, No. 3, August 2015)

Let Bn be the Bernoulli numbers defined by the generating function

x

ex − 1
=

∞
∑

n=0

Bn

n!
xn.

For integers n ≥ 0 and m ≥ 0, prove that

n
∑

k=0

(

2n

2k

)

F2mkB2(n−k) =
n√
5

[

2

Lm
∑

r=1

(αm − r)2n−1 + Lm(2n−1)

]

.

Solution by the proposer.

It is known that

Bn(x+ 1)−Bn(x) = nxn−1, where Bn(x) =

n
∑

k=0

(

n

k

)

Bn−kx
k.

By this identity, we have

2n
∑

k=0

(

2n

k

)

((αm − r + 1)k − (αm − r)k)B2n−k = 2n(αm − r)2n−1.

Using this identity, we have

Lm
∑

r=1

2n(αm − r)2n−1 =
2n
∑

k=0

(

2n

k

)

{

Lm
∑

r=1

((αm − r + 1)k − (αm − r)k)

}

B2n−k

=
2n
∑

k=0

(

2n

k

)

(αmk − (αm − Lm)k)B2n−k =
2n
∑

k=0

(

2n

k

)

(αmk − (−βm)k)B2n−k

=
n
∑

k=0

(

2n

2k

)

(α2mk − β2mk)B2(n−k) +

(

2n

2n − 1

)

(αm(2n−1) + βm(2n−1))B1

=
√
5

n
∑

k=0

(

2n

2k

)

F2mkB2(n−k) − nLm(2n−1).

Therefore, we obtain the desired identity.

Also solved by Dmitry Fleischman.
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Bessel Functions with Fibonacci and Lucas Numbers

H-774 Proposed by G. C. Greubel, Newport News, VA.
(Vol. 53, No. 3, August 2015)

1. Let m ≥ 0, p ≥ 0 be integers. Evaluate the series

∞
∑

n=0

Fn+pLn+m

(n+ p)!(n+m)!

in terms of the Bessel functions.
2. Evaluate the case m = p in terms of a series of modified Bessel functions of the first

kind. Take the limiting case m → 0.
3. Show that when p = 0 the series is given by

∞
∑

n=0

FnLn+m

n!(n+m)!
=

1√
5
(Im(2α)− Im(2β)− FmJm(2)) .

Solution by the proposer.

Part 1

Let the series in question be given by

Sm
p =

∞
∑

n=0

Fn+pLn+m

(n + p)!(n +m)!
.

Without much difficulty it is seen that

Fn+pLn+p = F2n+p+m + (−1)n+mFp−m.

Use of this expression leads the series Sm
p to the form

Sm
p =

∞
∑

n=0

F2n+p+m

(n + p)!(n +m)!
+ (−1)mFp−m

∞
∑

n=0

(−1)n

(n + p)!(n +m)!
.

This current expression can be more easily seen in the form

Sm
p =

1√
5m!p!

(

αp+mf(α2; p,m)− βp+mf(β2; p,m)
)

+
(−1)mFp−m

m!p!
f(−1; p,m), (1)

where

f(x; p,m) =

∞
∑

n=0

xn

(p+ 1)n(m+ 1)n
. (2)

The series given by f(x; p,m) is of the hypergeometric type 1F2 and can then be related to
the Lommel functions, which are of the Bessel “family” of functions. The Lommel functions
are expressed by

sµ,ν(z) =
zµ+1

(µ− ν + 1)(µ + ν + 1)
1F2

(

1;
µ− ν + 3

2
,
µ+ ν + 3

2
;−z2

4

)

.
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When µ and ν are set to the values µ = p+m−1 and ν = m−p the Lommel function reduces
to

sm+p−1,m−p(z) =
zm+p

4mp
1F2

(

1; p + 1,m+ 1;−z2

4

)

.

Upon making the change of variable z = 2i
√
x it is seen that

sm+p−1,m−p(2i
√
x) =

2m+p−2im+px(m+p)/2

mp
1F2(1; p + 1,m+ 1;x). (3)

Comparison of equations (2) and (3) lead to

f(x; p,m) = (mp)
22−m−p(−i)m+p

x(m+p)/2
sm+p−1,m−p(2i

√
x).

With this result equation (1) becomes

Sm
p =

(−i)m+p 22−m−p

√
5Γ(m)Γ(p)

[sm+p−1,m−p(2iα) − sm+p−1,m−p(2iβ)]

+
(−1)p 22−m−pFp−m

Γ(m)Γ(p)
sm+p−1,m−p(−2). (4)

As an alternate form the modified Lommel functions can be used, given by (see paper [1] and
the references therein):

tµ,ν(z) =
zµ+1

(µ− ν + 1)(µ + ν + 1)
1F2

(

1;
µ− ν + 3

2
,
µ+ ν + 3

2
;
z2

4

)

,

and have the relation tµ,ν(x) = (−i)µ+1sµ,ν(ix). With this, equation (4) becomes

Sm
p =

22−m−p

√
5 Γ(m)Γ(p)

[tm+p−1,m−p(2α) − tm+p−1,m−p(2β)]

+
(−1)p 22−m−pFp−m

Γ(m)Γ(p)
sm+p−1,m−p(−2).

The desired relation sought is, or equation (4),
∞
∑

n=0

Fn+pLn+m

(n+ p)!(n+m)!
=

22−m−p

√
5 Γ(m)Γ(p)

[tm+p−1,m−p(2α)− tm+p−1,m−p(2β)]

+
(−1)p 22−m−pFp−m

Γ(m)Γ(p)
sm+p−1,m−p(−2).

Part 2

Lommel’s function can be expanded in terms of a series involving the Bessel function of the
first kind. When µ± ν 6= −1,−2, . . . it is given that (see equation 11.9.7 in [2]):

sµ,ν(z) = 2µ+1
∞
∑

k=0

(2k + µ+ 1)Γ(k + µ+ 1)

k!(2k + µ− ν + 1)(2k + µ+ ν + 1)
J2k+µ+1(z).

When z = ix, the Bessel function becomes the modified Bessel function of the first kind and
is given by Jm(ix) = imIm(x), the result is

sµ,ν(ix) = (2i)µ+1
∞
∑

k=0

(−1)k(2k + µ+ 1)Γ(k + µ+ 1)

k!(2k + µ− ν + 1)(2k + µ+ ν + 1)
I2k+µ+1(z).
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When µ = p+m− 1 and ν = m− p this becomes

sm+p−1,m−p(ix) = −
∞
∑

k=0

(2i)m+p−2(−1)k(2k +m+ p)Γ(k +m+ p)

k!(k + p)(k +m)

· I2k+m+p(x).

Making use of this relation equation (4) becomes

Sm
p =

1√
5 Γ(m)Γ(p)

∞
∑

k=0

(−1)k(2k +m+ p)Γ(k +m+ p)

k!(k + p)(k +m)

·
[

I2k+m+p(2α) − I2k+m+p(2β) +
√
5 (−1)k+pFp−mJ2k+m+p(−2)

]

.

When m = p this reduces to
∞
∑

n=0

F2n+2m

[(n+m)!]2
=

2√
5 Γ2(m)

∞
∑

k=0

(−1)kΓ(k + 2m)

k!(k +m)

· [I2k+2m(2α) − I2k+2m(2β)]

or
∞
∑

n=0

F2n+2m

[(n +m)!]2
=

m√
5

(

2m

m

) ∞
∑

k=0

(−1)k(2m)k
k!(k +m)

[I2k+2m(2α)− I2k+2m(2β)] .

This is the desired result of Part 2. It may be noted than when m → 0 the expression can be
reduced to

∞
∑

n=0

F2n

[(n)!]2
=

1√
5
[I0(2α) − I0(2β)] . (5)

Part 3

Since FnLn+m = F2n+m − (−1)nFm it can be easily seen that
∞
∑

n=0

FnLn+m

n!(n+m)!
=

∞
∑

n=0

F2n+m

n!(n+m)!
− Fm

∞
∑

n=0

(−1)n

n!(n+m)!

=
1√
5

[

αm
∞
∑

n=0

α2n

n!(n+m)!
− βm

∞
∑

n=0

β2n

n!(n+m)!

]

− Fm

∞
∑

n=0

(−1)n

n!(n+m)!

∞
∑

n=0

FnLn+m

n!(n+m)!
=

1√
5
(Im(2α) − Im(2β)) − FmJm(2),

where Jm(x) and Im(x) are the Bessel and modified Bessel functions of the first kind, respec-
tively. When m = 0 this result reproduces (5).

From the relation Fn+pLn = F2n+p + (−1)pFp it follows that
∞
∑

n=0

Fn+pLn

n!(n+ p)!
=

1√
5
(Ip(2α) − Ip(2β)) + FpJp(2).
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Also solved by Dmitry Fleischman.
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