ADVANCED PROBLEMS AND SOLUTIONS

EDITED BY FLORIAN LUCA

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWA-TERSRAND, PRIVATE BAG X3, WITS 2050, JOHANNESBURG, SOUTH AFRICA or by e-mail at the address florian.luca@wits.ac.za as files of the type tex, dvi, ps, doc, html, pdf, etc. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, all solutions sent by regular mail should be submitted on separate signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

<u>**H-829</u>** Proposed by Angel Plaza and Francisco Perdomo, Gran Canaria, Spain For any positive integer k, let $\{F_{k,n}\}_{n\geq 0}$ be the sequence defined by $F_{k,0} = 0$, $F_{k,1} = 1$, and $F_{k,n+1} = F_{k,n} + F_{k,n-1}$ for $n \geq 1$. Find the limit</u>

$$\lim_{k \to \infty} \frac{k + \sqrt{k^2 + 4}}{2} \sum_{n=1}^{\infty} \arctan\left(\frac{kF_{k,n+1}^2}{1 + F_{k,n}F_{k,n+1}^2}F_{k,n+2}\right).$$

<u>H-830</u> Proposed by Hideyuki Ohtsuka, Saitama, Japan

For an integer $n \ge 1$, prove that

$$12\sum_{k=1}^{n} (F_k F_{k+1} F_{k+2})^2 \equiv 0 \pmod{F_n F_{n+1} F_{n+2} F_{n+3}}.$$

H-831 Proposed by Predrag Terzić, Podgorica, Montenegro

Let $P_j(x) = 2^{-j}((x - \sqrt{x^2 - 4})^j + (x + \sqrt{x^2 - 4})^j)$, where j and x are nonnegative integers. Let $N = k2^m + 1$ with k odd, $k < 2^m$ and m > 2. Let $S_0 = P_k(F_n)$ and $S_i = S_{i-1}^2 - 2$ for $i \ge 1$. Prove the following statement: If there exists F_n for which $S_{m-2} \equiv 0 \pmod{N}$, then N is prime.

H-832 Proposed by Hideyuki Ohtsuka, Saitama, Japan

For positive integers n and r, find a closed form expressions for

(i)
$$\sum_{k=1}^{n} F_{rk}^{3} L_{rk};$$

(ii) $\sum_{k=1}^{n} F_{2F_{k}}^{3} F_{2L_{k}}.$

SOLUTIONS

Diophantine equations with powers of the golden section

<u>H-796</u> Proposed by Hideyuki Ohtsuka, Saitama, Japan, and Florian Luca, Johannesburg, South Africa (Vol. 54, No. 3, August 2016)

Find all solutions (x, y) in positive integers of the equation

$$\tan^{-1} \alpha^{x} - \tan^{-1} \alpha^{y} = \tan^{-1} x - \tan^{-1} y,$$

where α is the golden section.

Solution by the proposers

We show that (x, y) = (7, 5) is the only solution. Applying tangent in both sides of the equation, the left side of it becomes

$$\tan\left(\tan^{-1}\alpha^x - \tan^{-1}\alpha^y\right) = \frac{\alpha^x - \alpha^y}{1 + \alpha^{x+y}},\tag{1}$$

whereas the right side of it becomes

$$\tan\left(\tan^{-1}x - \tan^{-1}y\right) = \frac{x - y}{1 + xy}.$$
(2)

Since (2) is rational, (1) should be invariant by the action of the only nontrivial Galois automorphism of $\mathbb{K} = \mathbb{Q}(\sqrt{5})$, which sends α to $\beta = -\alpha^{-1}$. Applying this to (1), we get that (1) is

$$\frac{\beta^x - \beta^y}{1 + \beta^{x+y}} = \frac{(-1)^x \alpha^{-x} - (-1)^y \alpha^{-y}}{1 + (-1)^{x+y} \alpha^{-x-y}} = \frac{(-1)^x \alpha^y - (-1)^y \alpha^x}{\alpha^{x+y} + (-1)^{x+y}}.$$
(3)

Assume first that x + y is odd. Then, $(-1)^x = (-1)^{y+1}$ and from (1) and (3), we get

$$\frac{\alpha^x - \alpha^y}{\alpha^{x+y} + 1} = (-1)^x \frac{\alpha^y + \alpha^x}{\alpha^{x+y} - 1}.$$

Since x > y, the left side above is positive. Thus, x is even and we get

$$\frac{\alpha^x - \alpha^y}{\alpha^{x+y} + 1} = \frac{\alpha^x + \alpha^y}{\alpha^{x+y} - 1} \quad \text{or, equivalently} \quad \frac{\alpha^{x+y} - 1}{\alpha^{x+y} + 1} = \frac{\alpha^x + \alpha^y}{\alpha^x - \alpha^y}$$

which is false since in the last equality of fractions, the left side is < 1 whereas the right side is > 1. So, x + y is even, therefore $(-1)^x = (-1)^y$. So, we get from (1) and (3) that

$$\frac{\alpha^x - \alpha^y}{\alpha^{x+y} + 1} = (-1)^{x+1} \frac{\alpha^x - \alpha^y}{\alpha^{x+y} + 1}$$

so x + 1 is even. Hence, x is odd and y is odd. Now, the given equation is

$$\frac{x-y}{1+xy} = \frac{\alpha^x - \alpha^y}{\alpha^{x+y} + 1} = \frac{\alpha^{(x-y)/2} - \alpha^{(y-x)/2}}{\alpha^{(x+y)/2} + \alpha^{-(x+y)/2}} = \begin{cases} \frac{L_{(x-y)/2}}{L_{(x+y)/2}} & \text{if } x+y \equiv 0 \pmod{4}; \\ \frac{F_{(x-y)/2}}{F_{(x+y)/2}} & \text{if } x+y \equiv 2 \pmod{4}. \end{cases}$$

Recall that $gcd(F_a, F_b) = F_d$, where d = gcd(a, b). Further, $gcd(L_a, L_b)$ equals L_d if and only if a/d and b/d are both odd. In the contrary case, $gcd(L_a, L_b) \in \{1, 2\}$. So, if $x + y \equiv 0 \pmod{4}$, then (x-y)/2 is odd and (x+y)/2 is even, therefore $gcd(L_{(x-y)/2}, L_{(x+y)/2}) \in \{1, 2\}$. Thus, the denominator of the reduced fraction $L_{(x-y)/2}/L_{(x+y)/2}$ is at least $L_{(x+y)/2}/2$. In case $x + y \equiv 2 \pmod{4}$, we have that (x-y)/2 is even and (x+y)/2 is odd, therefore $gcd(F_{(x-y)/2}, F_{(x+y)/2}) \leq F_{(x-y)/4}$, so the denominator of the reduced fraction $F_{(x-y)/2}/F_{(x+y)/2}$ is at least $F_{(x+y)/2}/F_{(x-y)/4}$.

VOLUME 56, NUMBER 4

Next, we recall that

$$\alpha^{n-2} \le F_n \le \alpha^{n-1}$$
 and $\alpha^{n-1} \le L_n \le \alpha^{n+1}$

hold for all $n \ge 1$. Thus, in case $x + y \equiv 0 \pmod{4}$, the denominator of $L_{(x-y)/2}/L_{(x+y)/2}$ is at least as large as

$$\frac{L_{(x+y)/2}}{2} \ge \frac{\alpha^{(x+y)/2-1}}{2} > \alpha^{x/2-3},$$

whereas in case $x + y \equiv 2 \pmod{4}$, the denominator of $F_{(x-y)/2}/F_{(x+y)/2}$ is at least as large as

$$\alpha^{(x+y)/2-2-((x-y)/4-1)} = \alpha^{x/4+3y/4-1} > \alpha^{x/4-1}$$

At any rate, this denominator is also the denominator of (x - y)/(1 + xy) and is therefore $\leq 1 + xy < x^2$. We thus get that

$$x^2 > \min\left\{\alpha^{x/2-3}, \alpha^{x/4-1}\right\},\$$

which leads to $x \leq 75$. So, all solutions have $1 \leq y < x \leq 75$ and we finish with a computer search.

For other equations with the inverse tangent of powers of the golden section, see [1].

[1] F. Luca and P. Stănică, On Machin's formula with powers of the golden section, Int. J. Number Theory, 5 (2009), 973–979.

Partially solved by Dmitry Fleischman.

An identity with Fibonomial coefficients

<u>H-797</u> Proposed by Hideyuki Ohtsuka, Saitama, Japan (Vol. 54, No. 4, November 2016)

Let $\binom{n}{k}_{F}$ denote the Fibonomial coefficient. For positive integers a, b, c, and d = a+b+c-1, prove that

$$\sum_{k=0}^{a} F_{2k} \binom{2a}{a+k}_{F} \binom{2b}{b+k}_{F} \binom{2c}{c+k}_{F} \binom{2d}{d+k}_{F}^{-1} = \frac{F_{a}F_{b}F_{c}F_{d+1}}{F_{a+b}F_{b+c}F_{c+a}} \binom{2a}{a}_{F} \binom{2b}{b}_{F} \binom{2c}{c}_{F} \binom{2d}{d}_{F}^{-1}.$$

Solution by the proposer

Let

$$\Delta(k) = \binom{2a-1}{a+k-1}_{F} \binom{2b-1}{b+k-1}_{F} \binom{2c-1}{c+k-1}_{F} \binom{2d+1}{d+k}_{F}^{-1} \\ - \binom{2a-1}{a+k}_{F} \binom{2b-1}{b+k}_{F} \binom{2c-1}{c+k}_{F} \binom{2d+1}{d+k+1}_{F}^{-1}.$$

In [1], Melham showed that

$$F_{k+a+b+c}F_{k-a}F_{k-b}F_{k-c} - F_{k-a-b-c}F_{k+a}F_{k+b}F_{k+c} = (-1)^{k+a+b+c}F_{a+b}F_{b+c}F_{c+a}F_{2k}.$$

That is,

$$F_{a+k}F_{b+k}F_{c+k}F_{d+1-k} - F_{a-k}F_{b-k}F_{c-k}F_{d+1+k} = F_{a+b}F_{b+c}F_{c+a}F_{2k}.$$
(4)

NOVEMBER 2018

375

THE FIBONACCI QUARTERLY

We have

$$\begin{split} \Delta(k) &= \frac{F_{a+k}}{F_{2a}} \binom{2a}{a+k}_{F} \frac{F_{b+k}}{F_{2b}} \binom{2b}{b+k}_{F} \frac{F_{c+k}}{F_{2c}} \binom{2c}{c+k}_{F} \frac{F_{d-k+1}}{F_{2d+1}} \binom{2d}{d+k}_{F}^{-1} \\ &- \frac{F_{a-k}}{F_{2a}} \binom{2a}{a+k}_{F} \frac{F_{b-k}}{F_{2b}} \binom{2b}{b+k}_{F} \frac{F_{c-k}}{F_{2c}} \binom{2c}{c+k}_{F} \frac{F_{d-k+1}}{F_{2d+1}} \binom{2d}{d+k}_{F}^{-1} \\ &= \frac{F_{a+b}F_{b+c}F_{c+a}F_{2k}}{F_{2a}F_{2b}F_{2c}F_{2d+1}} \binom{2a}{a+k}_{F} \binom{2b}{b+k}_{F} \binom{2c}{c+k}_{F} \binom{2d}{d+k}_{F}^{-1} \end{split}$$

by (4). Therefore, we have

$$\begin{split} &\sum_{k=0}^{a} F_{2k} \binom{2a}{a+k} \binom{2b}{b+k} \binom{2c}{c+k} \binom{2d}{d+k} -1 = \frac{F_{2a}F_{2b}F_{2c}F_{2d+1}}{F_{a+b}F_{b+c}F_{c+a}} \sum_{k=0}^{a} \Delta(k) \\ &= \frac{F_{2a}F_{2b}F_{2c}F_{2d+1}}{F_{a+b}F_{b+c}F_{c+a}} \left(\binom{2a-1}{a-1} \binom{2b-1}{b-1} \binom{2c-1}{c-1} \binom{2d+1}{c-1} -1 \right)_{F} \binom{2d+1}{d} -1 \\ &= \binom{2a-1}{2a} \binom{2b-1}{b+a} \binom{2c-1}{c+a} \binom{2d-1}{c+a} \binom{2d+1}{d+a+1} -1 \\ &= \frac{F_{2a}F_{2b}F_{2c}F_{2d+1}}{F_{a+b}F_{b+c}F_{c+a}} \binom{2a-1}{a-1} \binom{2b-1}{b-1} \binom{2c-1}{c-1} \binom{2d+1}{d} -1 \\ &= \frac{F_{2a}F_{2b}F_{2c}F_{2d+1}}{F_{a+b}F_{b+c}F_{c+a}} \times \frac{F_{a}}{F_{2a}} \binom{2a}{a} \binom{F_{b}}{F_{2b}} \binom{2b}{b} \binom{F_{c}}{F_{2c}} \binom{2c}{c} \binom{F_{d+1}}{F_{2d+1}} \binom{2d}{d} -1 \\ &= \frac{F_{a}F_{b}F_{c}F_{a+b+c}}{F_{a+b}F_{b+c}F_{c+a}} \binom{2a}{a} \binom{2b}{b} \binom{2c}{c} \binom{2d}{c} -1 \\ &= \frac{F_{a}F_{b}F_{c}F_{a+b+c}}{F_{a+b}F_{b+c}F_{c+a}} \binom{2a}{a} \binom{2b}{b} \binom{2c}{c} \binom{2d}{d} -1 \\ &= \frac{F_{a}F_{b}F_{c}F_{a+b+c}}{F_{a+b}F_{b+c}F_{c+a}} \binom{2a}{a} \binom{2b}{b} \binom{2c}{c} \binom{2d}{d} -1 \\ &= \frac{F_{a}F_{b}F_{c}F_{a+b+c}}{F_{a+b}F_{b+c}F_{c+a}} \binom{2a}{a} \binom{2b}{b} \binom{2c}{c} \binom{2d}{c} -1 \\ &= \frac{F_{a}F_{b}F_{c}F_{a+b+c}}{F_{c+a}} \binom{2a}{a} \binom{2b}{b} \binom{2c}{c} \binom{2d}{c} -1 \\ &= \frac{F_{a}F_{b}F_{c}F_{a+b+c}}{F_{a+b}F_{b+c}F_{c+a}} \binom{2a}{a} \binom{2b}{b} \binom{2c}{c} \binom{2d}{c} -1 \\ &= \frac{F_{a}F_{b}F_{c}F_{a+b+c}}{F_{c+a}} \binom{2a}{a} \binom{2b}{b} \binom{2c}{c} \binom{2d}{c} -1 \\ &= \frac{F_{a}F_{b}F_{c}F_{c+a}}{F_{a+b}F_{b+c}F_{c+a}} \binom{2a}{a} \binom{2b}{b} \binom{2c}{c} \binom{2d}{c} \binom{2d}{c} -1 \\ &= \frac{F_{a}F_{b}F_{c}F_{c+a}}{F_{a+b}F_{b+c}F_{c+a}} \binom{2a}{a} \binom{2b}{b} \binom{2c}{c} \binom{2d}{c} \binom{2d}{c} -1 \\ &= \frac{F_{a}F_{b}F_{c}F_{c+a}}{F_{a+b}F_{b+c}F_{c+a}} \binom{2a}{a} \binom{2b}{b} \binom{2c}{c} \binom{2d}{c} \binom{2d}{c}$$

The proposer also noticed that in the same manner

$$\sum_{k=0}^{a} F_{2k} \begin{pmatrix} a+b\\a+k \end{pmatrix}_{F} \begin{pmatrix} b+c\\b+k \end{pmatrix}_{F} \begin{pmatrix} c+a\\c+k \end{pmatrix}_{F} \begin{pmatrix} 2d\\d+k \end{pmatrix}_{F}^{-1}$$
$$= \frac{F_{a}F_{b}F_{c}F_{a+b+c}}{F_{a+b}F_{b+c}F_{c+a}} \begin{pmatrix} a+b\\a \end{pmatrix}_{F} \begin{pmatrix} b+c\\b \end{pmatrix}_{F} \begin{pmatrix} c+a\\c \end{pmatrix}_{F} \begin{pmatrix} 2d\\d \end{pmatrix}_{F}^{-1}.$$

[1] R. S. Melham, On product difference Fibonacci identities, INTEGERS, 11 (2010), #A10.
 Also partially solved by Dmitry Fleischman.

An inequality with Fibonacci numbers and trigonometric functions

<u>H-798</u> Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai Stanciu, Buzău, Romania (Vol. 54, No. 4, November 2016)

If $t \in (0, \pi/2)$ and $m \ge 0$, prove that

$$\frac{\sin^{m+2} t}{(F_n \sin t + F_{n+1} \cos t)^m} + \frac{\cos^{m+2} t}{(F_n \cos t + F_{n+1} \sin t)^m} \ge \frac{1}{F_{n+2}^m}$$

and

$$\frac{1}{(L_n + L_{n+1}\tan t)^m} + \frac{\tan^{m+2}t}{(L_n\tan t + L_{n+1})^m} \ge \frac{1}{L_{n+2}^m\cos^2 t}$$

hold for all $n \ge 1$.

VOLUME 56, NUMBER 4

Solution by Soumitra Mondal

We have

$$\frac{\sin^{m+2} t}{(F_n \sin t + F_{n+1} \cos t)^m} + \frac{\cos^{m+2} t}{(F_n \cos t + F_{n+1} \sin t)^m}$$

$$= \frac{(\sin^2 t)^{m+1}}{(F_n \sin^2 t + F_{n+1} \sin t \cos t)^m} + \frac{(\cos^2 t)^{m+1}}{(F_n \cos^2 t + F_{n+1} \sin t \cos t)^m}$$

$$\geq \frac{(\sin^2 t + \cos^2 t)^{m+1}}{(F_n + 2F_{n+1} \sin t \cos t)^m} \quad \text{(by Radon's inequality)}$$

$$\geq \frac{1}{(F_n + F_{n+1}(\sin^2 t + \cos^2 t))^m} = \frac{1}{(F_n + F_{n+1})^m} = \frac{1}{F_{n+2}^m}.$$

Again

$$\frac{1}{(L_n + L_{n+1} \tan t)^m} + \frac{\tan^{m+2} t}{(L_n \tan t + L_{n+1})^m}$$

$$= \frac{1}{(L_n + L_{n+1} \tan t)^m} + \frac{(\tan^2 t)^{m+1}}{(L_n \tan^2 t + L_{n+1} \tan t)^m}$$

$$\geq \frac{(1 + \tan^2 t)^{m+1}}{(L_n \sec^2 t + 2L_{n+1} \tan t)^m} \quad \text{(by Radon's inequality)}$$

$$\geq \frac{\sec^{2m+2} t}{(L_n \sec^2 t + L_{n+1}(1 + \tan^2 t))^m} = \frac{1}{(L_n + L_{n+1})^m \cos^2 t} = \frac{1}{L_{n+2}^m \cos^2 t}$$

Also solved by Dmitry Fleischman and the proposers.

An inequality with Fibonacci numbers

<u>H-799</u> Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai Stanciu, Buzău, Romania (Vol. 54, No. 4, November 2016)

Prove that

$$\frac{F_n}{F_{n+1}(F_{n+1}^2 + 4F_nF_{n+1} + 3F_n^2)} + \frac{F_{n+1}}{F_n(3F_{n+1}^2 + 4F_nF_{n+1} + F_n^2)} \ge \frac{4F_nF_{n+1}}{F_{n+2}^4}$$

and that the same inequality with all F's replaced by L's holds for all $n \ge 1$.

Solution by Brian Bradie

Note that

$$F_{n+1}^2 + 4F_nF_{n+1} + 3F_n^2 = (F_{n+1} + F_n)(F_{n+1} + 3F_n) = F_{n+2}(F_{n+1} + 3F_n),$$

and

$$3F_{n+1}^2 + 4F_nF_{n+1} + F_n^2 = (3F_{n+1} + F_n)(F_{n+1} + F_n) = F_{n+2}(3F_{n+1} + F_n).$$

Then, the desired inequality is equivalent to

$$F_{n+2}^3(F_n^2(3F_{n+1}+F_n)+F_{n+1}^2(3F_n+F_{n+1})) \ge 4F_n^2F_{n+1}^2(3F_n+F_{n+1})(3F_{n+1}+F_n).$$

This in turn is equivalent to

$$(F_n - F_{n+1})^2 (F_n^2 + 4F_n F_{n+1} + F_{n+1}^2)^2 \ge 0,$$

which is clearly true. Moreover, inequality holds if and only if n = 1.

NOVEMBER 2018

THE FIBONACCI QUARTERLY

Also solved by Kenneth B. Davenport, Dmitry Fleischman, Wei Kai-Lai and John Risher (jointly), Soumitra Mondal, Ángel Plaza, Hideyuki Ohtsuka, and the proposers.

A sum involving multinomial coefficients

H-800 Proposed by Mehtaab Sawhney, Commack, NY

(Vol. 54, No. 4, November 2016)

Let

$$S_k = \sum_{\substack{n_1+2n_2+\dots+kn_k=k\\n_1,n_2,\dots,n_k \in \mathbb{Z}_{\ge 0}}} (-1)^{n_1+n_2+\dots+n_k} \binom{n_1+n_2+\dots+n_k}{n_1,n_2,\dots,n_k} \prod_{j=1}^k (j+1)^{n_j}.$$

Compute S_1 , S_2 and show that $S_k = 0$ for all $k \ge 3$.

Solution by Eduardo H. M. Brietzke

We generalize the argument presented in [1], page 38, introducing parameters. Claim 1: If x_1, x_2, \ldots is any infinite set of parameters then

$$\sum_{\substack{k_1+2k_2+\dots+nk_n=n\\k_1+k_2+\dots+k_n=r}} \frac{(k_1+\dots+k_n)!}{k_1!\dots k_n!} x_1^{k_1}\dots x_n^{k_n} = [q^n] \left(\sum_{j\ge 1} x_j q^j\right)^{\uparrow}.$$
(5)

 $\setminus r$

/

In the above, for a formal series $\sum_{n\geq 0} a_n q^n$, the notation $[q^n] \sum_{n\geq 0} a_n q^n$ stands for the coefficient of q^n (equal to a_n).

Indeed, let $\psi(q) = e^{tq} = \sum_{n=0}^{\infty} \frac{t^n}{n!} q^n$ and consider the infinite product of formal power series $P := \prod_{j>1} \psi(x_j q^j)$. Then,

$$P = \prod_{j\geq 1} \sum_{k\geq 0} \frac{t^k x_j^k q^{jk}}{k!} = \sum_{n\geq 0} q^n \sum_{\substack{k_1+2k_2+\dots+nk_n=n}} \frac{t^{k_1+\dots+k_n} x_1^{k_1} \dots x_n^{k_n}}{k_1! \dots k_n!}$$

$$= \sum_{n\geq 0} q^n \sum_{r\geq 0} t^r \sum_{\substack{k_1+2k_2+\dots+nk_n=n\\k_1+k_2+\dots+k_n=r}} \frac{x_1^{k_1} \dots x_n^{k_n}}{k_1! \dots k_n!}.$$
(6)

Also,

$$P = e^{t\sum_{j\geq 1} x_j q^j} = \sum_{r\geq 0} \frac{t^r}{r!} \left(\sum_{j\geq 1} x_j q^j\right)^r$$
(7)

Comparing the coefficient of $q^n t^r$ in (6) and (7), we obtain (5).

Applying summation on r from 1 to infinity to both sides of (5), it follows that

$$\sum_{k_1+2k_2+\dots+nk_n=n} \frac{(k_1+\dots+k_n)!}{k_1!\dots k_n!} x_1^{k_1}\dots x_n^{k_n} = [q^n] \left(\left(1-\sum_{j\ge 1} x_j q^j\right)^{-1} - 1 \right).$$
(8)

Now, applying (8) with $x_j = -(j+1)$, we get

$$\sum_{k_1+2k_2+\dots+nk_n=n} (-1)^{k_1+k_2+\dots+k_n} \frac{(k_1+\dots+k_n)!}{k_1!\dots k_n!} 2^{k_1} 3^{k_2}\dots n^{k_n} = [q^n] \left(\frac{1}{1+2q+3q^2+\dots}-1\right),$$

VOLUME 56, NUMBER 4

or,

$$S_n = [q^n]((1-q)^2 - 1),$$

from which it follows that $S_1 = -2$, $S_2 = 1$, and $S_n = 0$ for $n \ge 3$.

Remark. Other choices of values for x_j in (8) might yield interesting results as well. For example, for $x_j = -(j+1)^2$ we get

$$\sum_{k_1+2k_2+\dots+nk_n=n} (-1)^{k_1+k_2+\dots+k_n} \frac{(k_1+\dots+k_n)!}{k_1!\dots k_n!} 2^{2k_1} 3^{2k_2} \dots (n+1)^{2k_n} = [q^n] \left(\frac{(1-q)^3}{1+q} - 1\right)$$
$$= \begin{cases} 0, & \text{if } n=0\\ -4, & \text{if } n=1\\ 7, & \text{if } n=2\\ (-1)^n 8, & \text{if } n \ge 3 \end{cases}$$

[1] N. J. Fine, *Basic Hypergeometric Series and Applications*, Mathematical Surveys and Monographs 27, AMS 1988.

Also solved by Dmitry Fleishman and the proposer.

Errata: In the statement of **H-827** the last factor inside the inner limit should be " $n^{F_{m-1}/F_{m+1}}$ " instead of " n^{F_{m-1}/F_m} ".