ADVANCED PROBLEMS AND SOLUTIONS

EDITED BY
FLORIAN LUCA

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG X3, WITS 2050, JOHANNESBURG, SOUTH AFRICA or by e-mail at the address florian.luca@wits.ac.za as files of the type tex, dvi, ps, doc, html, pdf, etc. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, all solutions sent by regular mail should be submitted on separate signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

H-829 Proposed by Ángel Plaza and Francisco Perdomo, Gran Canaria, Spain

For any positive integer k, let $\left\{F_{k, n}\right\}_{n \geq 0}$ be the sequence defined by $F_{k, 0}=0, F_{k, 1}=1$, and $F_{k, n+1}=F_{k, n}+F_{k, n-1}$ for $n \geq 1$. Find the limit

$$
\lim _{k \rightarrow \infty} \frac{k+\sqrt{k^{2}+4}}{2} \sum_{n=1}^{\infty} \arctan \left(\frac{k F_{k, n+1}^{2}}{1+F_{k, n} F_{k, n+1}^{2} F_{k, n+2}}\right) .
$$

H-830 Proposed by Hideyuki Ohtsuka, Saitama, Japan

For an integer $n \geq 1$, prove that

$$
12 \sum_{k=1}^{n}\left(F_{k} F_{k+1} F_{k+2}\right)^{2} \equiv 0 \quad\left(\bmod F_{n} F_{n+1} F_{n+2} F_{n+3}\right) .
$$

H-831 Proposed by Predrag Terzić, Podgorica, Montenegro

Let $P_{j}(x)=2^{-j}\left(\left(x-\sqrt{x^{2}-4}\right)^{j}+\left(x+\sqrt{x^{2}-4}\right)^{j}\right)$, where j and x are nonnegative integers. Let $N=k 2^{m}+1$ with k odd, $k<2^{m}$ and $m>2$. Let $S_{0}=P_{k}\left(F_{n}\right)$ and $S_{i}=S_{i-1}^{2}-2$ for $i \geq 1$. Prove the following statement: If there exists F_{n} for which $S_{m-2} \equiv 0(\bmod N)$, then N is prime.

H-832 Proposed by Hideyuki Ohtsuka, Saitama, Japan

For positive integers n and r, find a closed form expressions for
(i) $\sum_{k=1}^{n} F_{r k}^{3} L_{r k}$;
(ii) $\sum_{k=1}^{n} F_{2 F_{k}}^{3} F_{2 L_{k}}$.

THE FIBONACCI QUARTERLY

SOLUTIONS

Diophantine equations with powers of the golden section

H-796 Proposed by Hideyuki Ohtsuka, Saitama, Japan, and Florian Luca, Johannesburg, South Africa (Vol. 54, No. 3, August 2016)

Find all solutions (x, y) in positive integers of the equation

$$
\tan ^{-1} \alpha^{x}-\tan ^{-1} \alpha^{y}=\tan ^{-1} x-\tan ^{-1} y,
$$

where α is the golden section.

Solution by the proposers

We show that $(x, y)=(7,5)$ is the only solution. Applying tangent in both sides of the equation, the left side of it becomes

$$
\begin{equation*}
\tan \left(\tan ^{-1} \alpha^{x}-\tan ^{-1} \alpha^{y}\right)=\frac{\alpha^{x}-\alpha^{y}}{1+\alpha^{x+y}}, \tag{1}
\end{equation*}
$$

whereas the right side of it becomes

$$
\begin{equation*}
\tan \left(\tan ^{-1} x-\tan ^{-1} y\right)=\frac{x-y}{1+x y} . \tag{2}
\end{equation*}
$$

Since (2) is rational, (1) should be invariant by the action of the only nontrivial Galois automorphism of $\mathbb{K}=\mathbb{Q}(\sqrt{5})$, which sends α to $\beta=-\alpha^{-1}$. Applying this to (1), we get that (1) is

$$
\begin{equation*}
\frac{\beta^{x}-\beta^{y}}{1+\beta^{x+y}}=\frac{(-1)^{x} \alpha^{-x}-(-1)^{y} \alpha^{-y}}{1+(-1)^{x+y} \alpha^{-x-y}}=\frac{(-1)^{x} \alpha^{y}-(-1)^{y} \alpha^{x}}{\alpha^{x+y}+(-1)^{x+y}} . \tag{3}
\end{equation*}
$$

Assume first that $x+y$ is odd. Then, $(-1)^{x}=(-1)^{y+1}$ and from (1) and (3), we get

$$
\frac{\alpha^{x}-\alpha^{y}}{\alpha^{x+y}+1}=(-1)^{x} \frac{\alpha^{y}+\alpha^{x}}{\alpha^{x+y}-1} .
$$

Since $x>y$, the left side above is positive. Thus, x is even and we get

$$
\frac{\alpha^{x}-\alpha^{y}}{\alpha^{x+y}+1}=\frac{\alpha^{x}+\alpha^{y}}{\alpha^{x+y}-1} \quad \text { or, equivalently } \quad \frac{\alpha^{x+y}-1}{\alpha^{x+y}+1}=\frac{\alpha^{x}+\alpha^{y}}{\alpha^{x}-\alpha^{y}},
$$

which is false since in the last equality of fractions, the left side is <1 whereas the right side is >1. So, $x+y$ is even, therefore $(-1)^{x}=(-1)^{y}$. So, we get from (1) and (3) that

$$
\frac{\alpha^{x}-\alpha^{y}}{\alpha^{x+y}+1}=(-1)^{x+1} \frac{\alpha^{x}-\alpha^{y}}{\alpha^{x+y}+1},
$$

so $x+1$ is even. Hence, x is odd and y is odd. Now, the given equation is

$$
\frac{x-y}{1+x y}=\frac{\alpha^{x}-\alpha^{y}}{\alpha^{x+y}+1}=\frac{\alpha^{(x-y) / 2}-\alpha^{(y-x) / 2}}{\alpha^{(x+y) / 2}+\alpha^{-(x+y) / 2}}=\left\{\begin{array}{llll}
\frac{L_{(x-y) / 2}}{L_{(x-y) / 2}} & \text { if } & x+y \equiv 0 & (\bmod 4) ; \\
\frac{F_{(x-y) / 2}}{F_{(x+y) / 2}} & \text { if } & x+y \equiv 2 & (\bmod 4) .
\end{array}\right.
$$

Recall that $\operatorname{gcd}\left(F_{a}, F_{b}\right)=F_{d}$, where $d=\operatorname{gcd}(a, b)$. Further, $\operatorname{gcd}\left(L_{a}, L_{b}\right)$ equals L_{d} if and only if a / d and b / d are both odd. In the contrary case, $\operatorname{gcd}\left(L_{a}, L_{b}\right) \in\{1,2\}$. So, if $x+y \equiv 0(\bmod 4)$, then $(x-y) / 2$ is odd and $(x+y) / 2$ is even, therefore $\operatorname{gcd}\left(L_{(x-y) / 2}, L_{(x+y) / 2}\right) \in\{1,2\}$. Thus, the denominator of the reduced fraction $L_{(x-y) / 2} / L_{(x+y) / 2}$ is at least $L_{(x+y) / 2} / 2$. In case $x+y \equiv 2$ $(\bmod 4)$, we have that $(x-y) / 2$ is even and $(x+y) / 2$ is odd, therefore $\operatorname{gcd}\left(F_{(x-y) / 2}, F_{(x+y) / 2}\right) \leq$ $F_{(x-y) / 4}$, so the denominator of the reduced fraction $F_{(x-y) / 2} / F_{(x+y) / 2}$ is at least $F_{(x+y) / 2} / F_{(x-y) / 4}$.

Next, we recall that

$$
\alpha^{n-2} \leq F_{n} \leq \alpha^{n-1} \quad \text { and } \quad \alpha^{n-1} \leq L_{n} \leq \alpha^{n+1}
$$

hold for all $n \geq 1$. Thus, in case $x+y \equiv 0(\bmod 4)$, the denominator of $L_{(x-y) / 2} / L_{(x+y) / 2}$ is at least as large as

$$
\frac{L_{(x+y) / 2}}{2} \geq \frac{\alpha^{(x+y) / 2-1}}{2}>\alpha^{x / 2-3}
$$

whereas in case $x+y \equiv 2(\bmod 4)$, the denominator of $F_{(x-y) / 2} / F_{(x+y) / 2}$ is at least as large as

$$
\alpha^{(x+y) / 2-2-((x-y) / 4-1)}=\alpha^{x / 4+3 y / 4-1}>\alpha^{x / 4-1} .
$$

At any rate, this denominator is also the denominator of $(x-y) /(1+x y)$ and is therefore $\leq 1+x y<x^{2}$. We thus get that

$$
x^{2}>\min \left\{\alpha^{x / 2-3}, \alpha^{x / 4-1}\right\}
$$

which leads to $x \leq 75$. So, all solutions have $1 \leq y<x \leq 75$ and we finish with a computer search.

For other equations with the inverse tangent of powers of the golden section, see [1].
[1] F. Luca and P. Stănică, On Machin's formula with powers of the golden section, Int. J. Number Theory, 5 (2009), 973-979.

Partially solved by Dmitry Fleischman.

An identity with Fibonomial coefficients

H-797 Proposed by Hideyuki Ohtsuka, Saitama, Japan

(Vol. 54, No. 4, November 2016)
Let $\binom{n}{k}_{F}$ denote the Fibonomial coefficient. For positive integers a, b, c, and $d=a+b+c-1$, prove that
$\sum_{k=0}^{a} F_{2 k}\binom{2 a}{a+k}_{F}\binom{2 b}{b+k}_{F}\binom{2 c}{c+k}_{F}\binom{2 d}{d+k}_{F}^{-1}=\frac{F_{a} F_{b} F_{c} F_{d+1}}{F_{a+b} F_{b+c} F_{c+a}}\binom{2 a}{a}_{F}\binom{2 b}{b}_{F}\binom{2 c}{c}_{F}\binom{2 d}{d}_{F}^{-1}$.

Solution by the proposer

Let

$$
\begin{aligned}
\Delta(k) & =\binom{2 a-1}{a+k-1}_{F}\binom{2 b-1}{b+k-1}_{F}\binom{2 c-1}{c+k-1}_{F}\binom{2 d+1}{d+k}_{F}^{-1} \\
& -\binom{2 a-1}{a+k}_{F}\binom{2 b-1}{b+k}_{F}\binom{2 c-1}{c+k}_{F}\binom{2 d+1}{d+k+1}_{F}^{-1}
\end{aligned}
$$

In [1], Melham showed that

$$
F_{k+a+b+c} F_{k-a} F_{k-b} F_{k-c}-F_{k-a-b-c} F_{k+a} F_{k+b} F_{k+c}=(-1)^{k+a+b+c} F_{a+b} F_{b+c} F_{c+a} F_{2 k} .
$$

That is,

$$
\begin{equation*}
F_{a+k} F_{b+k} F_{c+k} F_{d+1-k}-F_{a-k} F_{b-k} F_{c-k} F_{d+1+k}=F_{a+b} F_{b+c} F_{c+a} F_{2 k} \tag{4}
\end{equation*}
$$

We have

$$
\begin{aligned}
\Delta(k) & =\frac{F_{a+k}}{F_{2 a}}\binom{2 a}{a+k}_{F} \frac{F_{b+k}}{F_{2 b}}\binom{2 b}{b+k}_{F} \frac{F_{c+k}}{F_{2 c}}\binom{2 c}{c+k}_{F} \frac{F_{d-k+1}}{F_{2 d+1}}\binom{2 d}{d+k}_{F}^{-1} \\
& -\frac{F_{a-k}}{F_{2 a}}\binom{2 a}{a+k}_{F} \frac{F_{b-k}}{F_{2 b}}\binom{2 b}{b+k}_{F} \frac{F_{c-k}}{F_{2 c}}\binom{2 c}{c+k}_{F} \frac{F_{d+k+1}}{F_{2 d+1}}\binom{2 d}{d+k}_{F}^{-1} \\
& =\frac{F_{a+b} F_{b+c} F_{c+a} F_{2 k}}{F_{2 a} F_{2 b} F_{2 c} F_{2 d+1}}\binom{2 a}{a+k}_{F}\binom{2 b}{b+k}_{F}\binom{2 c}{c+k}_{F}\binom{2 d}{d+k}_{F}^{-1}
\end{aligned}
$$

by (4). Therefore, we have

$$
\left.\begin{array}{rl}
& \sum_{k=0}^{a} F_{2 k}\binom{2 a}{a+k}_{F}\binom{2 b}{b+k}_{F}\binom{2 c}{c+k}_{F}\binom{2 d}{d+k}_{F}^{-1}=\frac{F_{2 a} F_{2 b} F_{2 c} F_{2 d+1}}{F_{a+b} F_{b+c} F_{c+a}} \sum_{k=0}^{a} \Delta(k) \\
= & \frac{F_{2 a} F_{2 b} F_{2 c} F_{2 d+1}}{F_{a+b} F_{b+c} F_{c+a}}\left(\binom{2 a-1}{a-1}_{F}\binom{2 b-1}{b-1}_{F}\binom{2 c-1}{c-1}_{F}\binom{2 d+1}{d}_{F}^{-1}\right. \\
- & \binom{2 a-1}{2 a}_{F}\binom{2 b-1}{b+a}_{F}\binom{2 c-1}{c+a}_{F}\binom{2 d+1}{d+a+1}_{F}^{-1}
\end{array}\right)_{F} .
$$

The proposer also noticed that in the same manner

$$
\begin{aligned}
& \sum_{k=0}^{a} F_{2 k}\binom{a+b}{a+k}_{F}\binom{b+c}{b+k}_{F}\binom{c+a}{c+k}_{F}\binom{2 d}{d+k}_{F}^{-1} \\
= & \frac{F_{a} F_{b} F_{c} F_{a+b+c}}{F_{a+b} F_{b+c} F_{c+a}}\binom{a+b}{a}_{F}\binom{b+c}{b}_{F}\binom{c+a}{c}_{F}\binom{2 d}{d}_{F}^{-1} .
\end{aligned}
$$

[1] R. S. Melham, On product difference Fibonacci identities, INTEGERS, 11 (2010), \#A10.

Also partially solved by Dmitry Fleischman.

An inequality with Fibonacci numbers and trigonometric functions
H-798 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai Stanciu, Buzău, Romania (Vol. 54, No. 4, November 2016)

If $t \in(0, \pi / 2)$ and $m \geq 0$, prove that

$$
\frac{\sin ^{m+2} t}{\left(F_{n} \sin t+F_{n+1} \cos t\right)^{m}}+\frac{\cos ^{m+2} t}{\left(F_{n} \cos t+F_{n+1} \sin t\right)^{m}} \geq \frac{1}{F_{n+2}^{m}}
$$

and

$$
\frac{1}{\left(L_{n}+L_{n+1} \tan t\right)^{m}}+\frac{\tan ^{m+2} t}{\left(L_{n} \tan t+L_{n+1}\right)^{m}} \geq \frac{1}{L_{n+2}^{m} \cos ^{2} t}
$$

hold for all $n \geq 1$.

Solution by Soumitra Mondal

We have

$$
\begin{aligned}
& \frac{\sin ^{m+2} t}{\left(F_{n} \sin t+F_{n+1} \cos t\right)^{m}}+\frac{\cos ^{m+2} t}{\left(F_{n} \cos t+F_{n+1} \sin t\right)^{m}} \\
= & \frac{\left(\sin ^{2} t\right)^{m+1}}{\left(F_{n} \sin ^{2} t+F_{n+1} \sin t \cos t\right)^{m}}+\frac{\left(\cos ^{2} t\right)^{m+1}}{\left(F_{n} \cos ^{2} t+F_{n+1} \sin t \cos t\right)^{m}} \\
\geq & \frac{\left(\sin ^{2} t+\cos ^{2} t\right)^{m+1}}{\left(F_{n}+2 F_{n+1} \sin t \cos t\right)^{m}} \quad(\text { by Radon's inequality }) \\
\geq & \frac{1}{\left(F_{n}+F_{n+1}\left(\sin ^{2} t+\cos ^{2} t\right)\right)^{m}}=\frac{1}{\left(F_{n}+F_{n+1}\right)^{m}}=\frac{1}{F_{n+2}^{m}} .
\end{aligned}
$$

Again

$$
\begin{aligned}
& \frac{1}{\left(L_{n}+L_{n+1} \tan t\right)^{m}}+\frac{\tan ^{m+2} t}{\left(L_{n} \tan t+L_{n+1}\right)^{m}} \\
= & \frac{1}{\left(L_{n}+L_{n+1} \tan t\right)^{m}}+\frac{\left(\tan ^{2} t\right)^{m+1}}{\left(L_{n} \tan ^{2} t+L_{n+1} \tan t\right)^{m}} \\
\geq & \frac{\left(1+\tan ^{2} t\right)^{m+1}}{\left(L_{n} \sec ^{2} t+2 L_{n+1} \tan t\right)^{m}} \quad(\text { by Radon's inequality) } \\
\geq & \frac{\sec ^{2 m+2} t}{\left(L_{n} \sec ^{2} t+L_{n+1}\left(1+\tan ^{2} t\right)\right)^{m}}=\frac{1}{\left(L_{n}+L_{n+1}\right)^{m} \cos ^{2} t}=\frac{1}{L_{n+2}^{m} \cos ^{2} t} .
\end{aligned}
$$

Also solved by Dmitry Fleischman and the proposers.

An inequality with Fibonacci numbers

H-799 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai Stanciu, Buzău, Romania (Vol. 54, No. 4, November 2016)

Prove that

$$
\frac{F_{n}}{F_{n+1}\left(F_{n+1}^{2}+4 F_{n} F_{n+1}+3 F_{n}^{2}\right)}+\frac{F_{n+1}}{F_{n}\left(3 F_{n+1}^{2}+4 F_{n} F_{n+1}+F_{n}^{2}\right)} \geq \frac{4 F_{n} F_{n+1}}{F_{n+2}^{4}}
$$

and that the same inequality with all F 's replaced by L 's holds for all $n \geq 1$.

Solution by Brian Bradie

Note that

$$
F_{n+1}^{2}+4 F_{n} F_{n+1}+3 F_{n}^{2}=\left(F_{n+1}+F_{n}\right)\left(F_{n+1}+3 F_{n}\right)=F_{n+2}\left(F_{n+1}+3 F_{n}\right),
$$

and

$$
3 F_{n+1}^{2}+4 F_{n} F_{n+1}+F_{n}^{2}=\left(3 F_{n+1}+F_{n}\right)\left(F_{n+1}+F_{n}\right)=F_{n+2}\left(3 F_{n+1}+F_{n}\right) .
$$

Then, the desired inequality is equivalent to

$$
F_{n+2}^{3}\left(F_{n}^{2}\left(3 F_{n+1}+F_{n}\right)+F_{n+1}^{2}\left(3 F_{n}+F_{n+1}\right)\right) \geq 4 F_{n}^{2} F_{n+1}^{2}\left(3 F_{n}+F_{n+1}\right)\left(3 F_{n+1}+F_{n}\right) .
$$

This in turn is equivalent to

$$
\left(F_{n}-F_{n+1}\right)^{2}\left(F_{n}^{2}+4 F_{n} F_{n+1}+F_{n+1}^{2}\right)^{2} \geq 0,
$$

which is clearly true. Moreover, inequality holds if and only if $n=1$.

THE FIBONACCI QUARTERLY

Also solved by Kenneth B. Davenport, Dmitry Fleischman, Wei Kai-Lai and John Risher (jointly), Soumitra Mondal, Ángel Plaza, Hideyuki Ohtsuka, and the proposers.

A sum involving multinomial coefficients

H-800 Proposed by Mehtaab Sawhney, Commack, NY

(Vol. 54, No. 4, November 2016)
Let

$$
S_{k}=\sum_{\substack{n_{1}+2 n_{2}+\cdots+k n_{k}=k \\ n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{Z}_{\geq 0}}}(-1)^{n_{1}+n_{2}+\cdots+n_{k}}\binom{n_{1}+n_{2}+\cdots+n_{k}}{n_{1}, n_{2}, \ldots, n_{k}} \prod_{j=1}^{k}(j+1)^{n_{j}}
$$

Compute S_{1}, S_{2} and show that $S_{k}=0$ for all $k \geq 3$.

Solution by Eduardo H. M. Brietzke

We generalize the argument presented in [1], page 38, introducing parameters.
Claim 1: If x_{1}, x_{2}, \ldots is any infinite set of parameters then

$$
\begin{equation*}
\sum_{\substack{k_{1}+22_{2}+\cdots+n k_{n}=n \\ k_{1}+k_{2}+\cdots+k_{n}=r}} \frac{\left(k_{1}+\cdots+k_{n}\right)!}{k_{1}!\cdots k_{n}!} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}=\left[q^{n}\right]\left(\sum_{j \geq 1} x_{j} q^{j}\right)^{r} . \tag{5}
\end{equation*}
$$

In the above, for a formal series $\sum_{n \geq 0} a_{n} q^{n}$, the notation $\left[q^{n}\right] \sum_{n \geq 0} a_{n} q^{n}$ stands for the coefficient of q^{n} (equal to a_{n}).

Indeed, let $\psi(q)=e^{t q}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} q^{n}$ and consider the infinite product of formal power series $P:=\prod_{j \geq 1} \psi\left(x_{j} q^{j}\right)$. Then,

$$
\begin{align*}
P & =\prod_{j \geq 1} \sum_{k \geq 0} \frac{t^{k} x_{j}^{k} q^{j k}}{k!}=\sum_{n \geq 0} q^{n} \sum_{\substack{k_{1}+2 k_{2}+\cdots+n k_{n}=n}} \frac{t^{k_{1}+\cdots+k_{n}} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}}{k_{1}!\cdots k_{n}!} \\
& =\sum_{n \geq 0} q^{n} \sum_{r \geq 0} t^{r} \sum_{\substack{k_{1}+2 k_{2}+\cdots+n k_{n}=n \\
k_{1}+k_{2}+\cdots+k_{n}=r}} \frac{x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}}{k_{1}!\cdots k_{n}!} . \tag{6}
\end{align*}
$$

Also,

$$
\begin{equation*}
P=e^{t \sum_{j \geq 1} x_{j} q^{j}}=\sum_{r \geq 0} \frac{t^{r}}{r!}\left(\sum_{j \geq 1} x_{j} q^{j}\right)^{r} \tag{7}
\end{equation*}
$$

Comparing the coefficient of $q^{n} t^{r}$ in (6) and (7), we obtain (5).
Applying summation on r from 1 to infinity to both sides of (5), it follows that

$$
\begin{equation*}
\sum_{k_{1}+2 k_{2}+\cdots+n k_{n}=n} \frac{\left(k_{1}+\cdots+k_{n}\right)!}{k_{1}!\cdots k_{n}!} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}=\left[q^{n}\right]\left(\left(1-\sum_{j \geq 1} x_{j} q^{j}\right)^{-1}-1\right) . \tag{8}
\end{equation*}
$$

Now, applying (8) with $x_{j}=-(j+1)$, we get

$$
\sum_{k_{1}+2 k_{2}+\cdots+n k_{n}=n}(-1)^{k_{1}+k_{2}+\cdots+k_{n}} \frac{\left(k_{1}+\cdots+k_{n}\right)!}{k_{1}!\cdots k_{n}!} 2^{k_{1}} 3^{k_{2}} \cdots n^{k_{n}}=\left[q^{n}\right]\left(\frac{1}{1+2 q+3 q^{2}+\cdots}-1\right),
$$

or,

$$
S_{n}=\left[q^{n}\right]\left((1-q)^{2}-1\right),
$$

from which it follows that $S_{1}=-2, S_{2}=1$, and $S_{n}=0$ for $n \geq 3$.
Remark. Other choices of values for x_{j} in (8) might yield interesting results as well. For example, for $x_{j}=-(j+1)^{2}$ we get $\sum_{k_{1}+2 k_{2}+\cdots+n k_{n}=n}(-1)^{k_{1}+k_{2}+\cdots+k_{n}} \frac{\left(k_{1}+\cdots+k_{n}\right)!}{k_{1}!\cdots k_{n}!} 2^{2 k_{1}} 3^{2 k_{2}} \cdots(n+1)^{2 k_{n}}=\left[q^{n}\right]\left(\frac{(1-q)^{3}}{1+q}-1\right)$

$$
=\left\{\begin{array}{cl}
0, & \text { if } n=0 \\
-4, & \text { if } n=1 \\
7, & \text { if } n=2 \\
(-1)^{n} 8, & \text { if } n \geq 3
\end{array}\right.
$$

[1] N. J. Fine, Basic Hypergeometric Series and Applications, Mathematical Surveys and Monographs 27, AMS 1988.

Also solved by Dmitry Fleishman and the proposer.
Errata: In the statement of $\mathbf{H - 8 2 7}$ the last factor inside the inner limit should be " $n{ }^{F_{m-1} / F_{m+1}}$ " instead of " $n^{F_{m-1} / F_{m} \text { ". }}$

