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PROBLEMS PROPOSED IN THIS ISSUE

H-829 Proposed by Ángel Plaza and Francisco Perdomo, Gran Canaria, Spain
For any positive integer k, let {Fk,n}n≥0 be the sequence defined by Fk,0 = 0, Fk,1 = 1, and

Fk,n+1 = Fk,n + Fk,n−1 for n ≥ 1. Find the limit

lim
k→∞

k +
√
k2 + 4

2

∞∑
n=1

arctan

(
kF 2

k,n+1

1 + Fk,nF
2
k,n+1Fk,n+2

)
.

H-830 Proposed by Hideyuki Ohtsuka, Saitama, Japan
For an integer n ≥ 1, prove that

12

n∑
k=1

(FkFk+1Fk+2)
2 ≡ 0 (mod FnFn+1Fn+2Fn+3).

H-831 Proposed by Predrag Terzić, Podgorica, Montenegro
Let Pj(x) = 2−j((x−

√
x2 − 4)j + (x+

√
x2 − 4)j), where j and x are nonnegative integers.

Let N = k2m + 1 with k odd, k < 2m and m > 2. Let S0 = Pk(Fn) and Si = S2
i−1 − 2 for

i ≥ 1. Prove the following statement: If there exists Fn for which Sm−2 ≡ 0 (mod N), then
N is prime.

H-832 Proposed by Hideyuki Ohtsuka, Saitama, Japan
For positive integers n and r, find a closed form expressions for

(i)
∑n

k=1 F
3
rkLrk;

(ii)
∑n

k=1 F
3
2Fk

F2Lk
.
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SOLUTIONS

Diophantine equations with powers of the golden section

H-796 Proposed by Hideyuki Ohtsuka, Saitama, Japan, and Florian Luca, Johan-
nesburg, South Africa (Vol. 54, No. 3, August 2016)

Find all solutions (x, y) in positive integers of the equation

tan−1 αx − tan−1 αy = tan−1 x− tan−1 y,

where α is the golden section.

Solution by the proposers

We show that (x, y) = (7, 5) is the only solution. Applying tangent in both sides of the
equation, the left side of it becomes

tan
(
tan−1 αx − tan−1 αy

)
=

αx − αy

1 + αx+y
, (1)

whereas the right side of it becomes

tan
(
tan−1 x− tan−1 y

)
=

x− y
1 + xy

. (2)

Since (2) is rational, (1) should be invariant by the action of the only nontrivial Galois auto-
morphism of K = Q(

√
5), which sends α to β = −α−1. Applying this to (1), we get that (1)

is
βx − βy

1 + βx+y
=

(−1)xα−x − (−1)yα−y

1 + (−1)x+yα−x−y
=

(−1)xαy − (−1)yαx

αx+y + (−1)x+y
. (3)

Assume first that x+ y is odd. Then, (−1)x = (−1)y+1 and from (1) and (3), we get

αx − αy

αx+y + 1
= (−1)x

αy + αx

αx+y − 1
.

Since x > y, the left side above is positive. Thus, x is even and we get

αx − αy

αx+y + 1
=

αx + αy

αx+y − 1
or, equivalently

αx+y − 1

αx+y + 1
=
αx + αy

αx − αy
,

which is false since in the last equality of fractions, the left side is < 1 whereas the right side
is > 1. So, x+ y is even, therefore (−1)x = (−1)y. So, we get from (1) and (3) that

αx − αy

αx+y + 1
= (−1)x+1 α

x − αy

αx+y + 1
,

so x+ 1 is even. Hence, x is odd and y is odd. Now, the given equation is

x− y
1 + xy

=
αx − αy

αx+y + 1
=

α(x−y)/2 − α(y−x)/2

α(x+y)/2 + α−(x+y)/2
=


L(x−y)/2

L(x+y)/2
if x+ y ≡ 0 (mod 4);

F(x−y)/2

F(x+y)/2
if x+ y ≡ 2 (mod 4).

Recall that gcd(Fa, Fb) = Fd, where d = gcd(a, b). Further, gcd(La, Lb) equals Ld if and only if
a/d and b/d are both odd. In the contrary case, gcd(La, Lb) ∈ {1, 2}. So, if x+y ≡ 0 (mod 4),
then (x−y)/2 is odd and (x+y)/2 is even, therefore gcd(L(x−y)/2, L(x+y)/2) ∈ {1, 2}. Thus, the
denominator of the reduced fraction L(x−y)/2/L(x+y)/2 is at least L(x+y)/2/2. In case x+y ≡ 2
(mod 4), we have that (x−y)/2 is even and (x+y)/2 is odd, therefore gcd(F(x−y)/2, F(x+y)/2) ≤
F(x−y)/4, so the denominator of the reduced fraction F(x−y)/2/F(x+y)/2 is at least F(x+y)/2/F(x−y)/4.
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Next, we recall that

αn−2 ≤ Fn ≤ αn−1 and αn−1 ≤ Ln ≤ αn+1

hold for all n ≥ 1. Thus, in case x+ y ≡ 0 (mod 4), the denominator of L(x−y)/2/L(x+y)/2 is
at least as large as

L(x+y)/2

2
≥ α(x+y)/2−1

2
> αx/2−3,

whereas in case x + y ≡ 2 (mod 4), the denominator of F(x−y)/2/F(x+y)/2 is at least as large
as

α(x+y)/2−2−((x−y)/4−1) = αx/4+3y/4−1 > αx/4−1.

At any rate, this denominator is also the denominator of (x − y)/(1 + xy) and is therefore
≤ 1 + xy < x2. We thus get that

x2 > min
{
αx/2−3, αx/4−1

}
,

which leads to x ≤ 75. So, all solutions have 1 ≤ y < x ≤ 75 and we finish with a computer
search.

For other equations with the inverse tangent of powers of the golden section, see [1].

[1] F. Luca and P. Stănică, On Machin’s formula with powers of the golden section, Int. J. Num-
ber Theory, 5 (2009), 973–979.

Partially solved by Dmitry Fleischman.

An identity with Fibonomial coefficients

H-797 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 54, No. 4, November 2016)

Let
(
n
k

)
F

denote the Fibonomial coefficient. For positive integers a, b, c, and d = a+b+c−1,
prove that

a∑
k=0

F2k

(
2a

a+ k

)
F

(
2b

b+ k

)
F

(
2c

c+ k

)
F

(
2d

d+ k

)−1
F

=
FaFbFcFd+1

Fa+bFb+cFc+a

(
2a

a

)
F

(
2b

b

)
F

(
2c

c

)
F

(
2d

d

)−1
F

.

Solution by the proposer

Let

∆(k) =

(
2a− 1

a+ k − 1

)
F

(
2b− 1

b+ k − 1

)
F

(
2c− 1

c+ k − 1

)
F

(
2d+ 1

d+ k

)−1
F

−
(

2a− 1

a+ k

)
F

(
2b− 1

b+ k

)
F

(
2c− 1

c+ k

)
F

(
2d+ 1

d+ k + 1

)−1
F

.

In [1], Melham showed that

Fk+a+b+cFk−aFk−bFk−c − Fk−a−b−cFk+aFk+bFk+c = (−1)k+a+b+cFa+bFb+cFc+aF2k.

That is,

Fa+kFb+kFc+kFd+1−k − Fa−kFb−kFc−kFd+1+k = Fa+bFb+cFc+aF2k. (4)
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We have

∆(k) =
Fa+k

F2a

(
2a

a+ k

)
F

Fb+k

F2b

(
2b

b+ k

)
F

Fc+k

F2c

(
2c

c+ k

)
F

Fd−k+1

F2d+1

(
2d

d+ k

)−1
F

− Fa−k
F2a

(
2a

a+ k

)
F

Fb−k
F2b

(
2b

b+ k

)
F

Fc−k
F2c

(
2c

c+ k

)
F

Fd+k+1

F2d+1

(
2d

d+ k

)−1
F

=
Fa+bFb+cFc+aF2k

F2aF2bF2cF2d+1

(
2a

a+ k

)
F

(
2b

b+ k

)
F

(
2c

c+ k

)
F

(
2d

d+ k

)−1
F

by (4). Therefore, we have
a∑

k=0

F2k

(
2a

a+ k

)
F

(
2b

b+ k

)
F

(
2c

c+ k

)
F

(
2d

d+ k

)−1
F

=
F2aF2bF2cF2d+1

Fa+bFb+cFc+a

a∑
k=0

∆(k)

=
F2aF2bF2cF2d+1

Fa+bFb+cFc+a

((
2a− 1

a− 1

)
F

(
2b− 1

b− 1

)
F

(
2c− 1

c− 1

)
F

(
2d+ 1

d

)−1
F

−
(

2a− 1

2a

)
F

(
2b− 1

b+ a

)
F

(
2c− 1

c+ a

)
F

(
2d+ 1

d+ a+ 1

)−1
F

)

=
F2aF2bF2cF2d+1

Fa+bFb+cFc+a

(
2a− 1

a− 1

)
F

(
2b− 1

b− 1

)
F

(
2c− 1

c− 1

)
F

(
2d+ 1

d

)−1
F

=
F2aF2bF2cF2d+1

Fa+bFb+cFc+a
× Fa

F2a

(
2a

a

)
F

Fb

F2b

(
2b

b

)
F

Fc

F2c

(
2c

c

)
F

Fd+1

F2d+1

(
2d

d

)−1
F

=
FaFbFcFa+b+c

Fa+bFb+cFc+a

(
2a

a

)
F

(
2b

b

)
F

(
2c

c

)
F

(
2d

d

)−1
F

.

The proposer also noticed that in the same manner
a∑

k=0

F2k

(
a+ b

a+ k

)
F

(
b+ c

b+ k

)
F

(
c+ a

c+ k

)
F

(
2d

d+ k

)−1
F

=
FaFbFcFa+b+c

Fa+bFb+cFc+a

(
a+ b

a

)
F

(
b+ c

b

)
F

(
c+ a

c

)
F

(
2d

d

)−1
F

.

[1] R. S. Melham, On product difference Fibonacci identities, INTEGERS, 11 (2010), #A10.

Also partially solved by Dmitry Fleischman.

An inequality with Fibonacci numbers and trigonometric functions

H-798 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai Stanciu,
Buzău, Romania (Vol. 54, No. 4, November 2016)

If t ∈ (0, π/2) and m ≥ 0, prove that

sinm+2 t

(Fn sin t+ Fn+1 cos t)m
+

cosm+2 t

(Fn cos t+ Fn+1 sin t)m
≥ 1

Fm
n+2

and
1

(Ln + Ln+1 tan t)m
+

tanm+2 t

(Ln tan t+ Ln+1)m
≥ 1

Lm
n+2 cos2 t

hold for all n ≥ 1.
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Solution by Soumitra Mondal

We have

sinm+2 t

(Fn sin t+ Fn+1 cos t)m
+

cosm+2 t

(Fn cos t+ Fn+1 sin t)m

=
(sin2 t)m+1

(Fn sin2 t+ Fn+1 sin t cos t)m
+

(cos2 t)m+1

(Fn cos2 t+ Fn+1 sin t cos t)m

≥ (sin2 t+ cos2 t)m+1

(Fn + 2Fn+1 sin t cos t)m
(by Radon’s inequality)

≥ 1

(Fn + Fn+1(sin
2 t+ cos2 t))m

=
1

(Fn + Fn+1)m
=

1

Fm
n+2

.

Again

1

(Ln + Ln+1 tan t)m
+

tanm+2 t

(Ln tan t+ Ln+1)m

=
1

(Ln + Ln+1 tan t)m
+

(tan2 t)m+1

(Ln tan2 t+ Ln+1 tan t)m

≥ (1 + tan2 t)m+1

(Ln sec2 t+ 2Ln+1 tan t)m
(by Radon’s inequality)

≥ sec2m+2 t

(Ln sec2 t+ Ln+1(1 + tan2 t))m
=

1

(Ln + Ln+1)m cos2 t
=

1

Lm
n+2 cos2 t

.

Also solved by Dmitry Fleischman and the proposers.

An inequality with Fibonacci numbers

H-799 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai Stanciu,
Buzău, Romania (Vol. 54, No. 4, November 2016)

Prove that

Fn

Fn+1(F 2
n+1 + 4FnFn+1 + 3F 2

n)
+

Fn+1

Fn(3F 2
n+1 + 4FnFn+1 + F 2

n)
≥ 4FnFn+1

F 4
n+2

and that the same inequality with all F ’s replaced by L’s holds for all n ≥ 1.

Solution by Brian Bradie

Note that

F 2
n+1 + 4FnFn+1 + 3F 2

n = (Fn+1 + Fn)(Fn+1 + 3Fn) = Fn+2(Fn+1 + 3Fn),

and

3F 2
n+1 + 4FnFn+1 + F 2

n = (3Fn+1 + Fn)(Fn+1 + Fn) = Fn+2(3Fn+1 + Fn).

Then, the desired inequality is equivalent to

F 3
n+2(F

2
n(3Fn+1 + Fn) + F 2

n+1(3Fn + Fn+1)) ≥ 4F 2
nF

2
n+1(3Fn + Fn+1)(3Fn+1 + Fn).

This in turn is equivalent to

(Fn − Fn+1)
2(F 2

n + 4FnFn+1 + F 2
n+1)

2 ≥ 0,

which is clearly true. Moreover, inequality holds if and only if n = 1.
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Also solved by Kenneth B. Davenport, Dmitry Fleischman, Wei Kai-Lai and
John Risher (jointly), Soumitra Mondal, Ángel Plaza, Hideyuki Ohtsuka, and the
proposers.

A sum involving multinomial coefficients

H-800 Proposed by Mehtaab Sawhney, Commack, NY
(Vol. 54, No. 4, November 2016)

Let

Sk =
∑

n1+2n2+···+knk=k
n1,n2,...,nk∈Z≥0

(−1)n1+n2+···+nk

(
n1 + n2 + · · ·+ nk
n1, n2, . . . , nk

) k∏
j=1

(j + 1)nj .

Compute S1, S2 and show that Sk = 0 for all k ≥ 3.

Solution by Eduardo H. M. Brietzke

We generalize the argument presented in [1], page 38, introducing parameters.
Claim 1 : If x1, x2, . . . is any infinite set of parameters then

∑
k1+2k2+···+nkn=n
k1+k2+···+kn=r

(k1 + · · ·+ kn)!

k1! · · · kn!
xk11 · · ·x

kn
n = [qn]

∑
j≥1

xjq
j

r

. (5)

In the above, for a formal series
∑

n≥0 anq
n, the notation [qn]

∑
n≥0 anq

n stands for the coef-

ficient of qn (equal to an).
Indeed, let ψ(q) = etq =

∑∞
n=0

tn

n! q
n and consider the infinite product of formal power series

P :=
∏

j≥1 ψ(xjq
j). Then,

P =
∏
j≥1

∑
k≥0

tkxkj q
jk

k!
=
∑
n≥0

qn
∑

k1+2k2+···+nkn=n

tk1+···+knxk11 · · ·xknn
k1! · · · kn!

=
∑
n≥0

qn
∑
r≥0

tr
∑

k1+2k2+···+nkn=n
k1+k2+···+kn=r

xk11 · · ·xknn
k1! · · · kn!

.

(6)

Also,

P = et
∑

j≥1 xjq
j

=
∑
r≥0

tr

r!

∑
j≥1

xjq
j

r

(7)

Comparing the coefficient of qntr in (6) and (7), we obtain (5).
Applying summation on r from 1 to infinity to both sides of (5), it follows that

∑
k1+2k2+···+nkn=n

(k1 + · · ·+ kn)!

k1! · · · kn!
xk11 · · ·x

kn
n = [qn]

1−
∑
j≥1

xjq
j

−1 − 1

 . (8)

Now, applying (8) with xj = −(j + 1), we get∑
k1+2k2+···+nkn=n

(−1)k1+k2+···+kn (k1 + · · ·+ kn)!

k1! · · · kn!
2k13k2 · · ·nkn = [qn]

(
1

1 + 2q + 3q2 + · · ·
− 1

)
,
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or,
Sn = [qn]((1− q)2 − 1),

from which it follows that S1 = −2, S2 = 1, and Sn = 0 for n ≥ 3.

Remark. Other choices of values for xj in (8) might yield interesting results as well. For
example, for xj = −(j + 1)2 we get∑
k1+2k2+···+nkn=n

(−1)k1+k2+···+kn (k1 + · · ·+ kn)!

k1! · · · kn!
22k132k2 · · · (n+ 1)2kn = [qn]

(
(1− q)3

1 + q
− 1

)

=


0, if n = 0
−4, if n = 1
7, if n = 2

(−1)n8, if n ≥ 3

[1] N. J. Fine, Basic Hypergeometric Series and Applications, Mathematical Surveys and
Monographs 27, AMS 1988.

Also solved by Dmitry Fleishman and the proposer.

Errata: In the statement of H-827 the last factor inside the inner limit should be “nFm−1/Fm+1”
instead of “nFm−1/Fm”.
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