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PROBLEMS PROPOSED IN THIS ISSUE

H-708 Proposed by José Luis D́ıaz-Barrero, Polytechnical University of Ca-
talonia, Barcelona, Spain.

Let n be a positive integer. Prove that
(

n

F 2
n + F 2

n+1

)2

+

(

1

4n2

n
∏

k=1

1

F 4
k

)(

n
∑
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(F 4
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)2
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H-709 Proposed by Ovidiu Furdui, Campia Turzii, Romania

a) Let a be a positive real number. Calculate,

lim
n→∞

an (n− ζ(2)− ζ(3)− · · · − ζ(n)) ,

where ζ is the Riemann zeta function.
b) Let a be a real number such that |a| < 2. Prove that,

∞
∑

n=2

an (n− ζ(2)− ζ(3)− · · · − ζ(n)) = a

(

Ψ(2− a) + γ

1− a
− 1

)

,

where Ψ denotes the Digamma function.

H-710 Proposed by Emeric Deutsch, Polytechnic Institute of NYU, Brooklyn,
NY

Let an,k denote the number of ternary words (i.e., finite sequences of 0’s, 1’s and 2’s) of length

n and having k occurrences of 01’s. Find the generating function G(t, z) =
∑

k≥0,n≥0 an,kt
kzn.

H-711 Proposed by Hideyuki Ohtsuka, Saitama, Japan

Let Rn =
√

Fn+3 +
√

Fn+4 for n ≥ 0. Prove that

Rn −R2 + 2 ≤
n
∑

k=1

√

Fk ≤ Rn −R1 + 1.
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SOLUTIONS

Series with Powers of the Golden Section

H-687 Proposed by G. C. Greubel, Newport News, VA
(Vol. 47, No. 2, May 2009/2010)

i) Show that

∞
∑

n=0

[

1

5n+ 1
− β2

5n + 3
− β4

5n+ 4
− β5

5n+ 5

]

(−β5)n = π

(

α6

55

)
1

4

.

ii) From the series in i) and H-669 (corrected) show that

ii.1)
∞
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+

1

5n+ 2
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]

(
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)
5

4

;

ii.2)

∞
∑
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[

α3
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+

α

5n+ 3
− 1

5n+ 4
− 1
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]

(

−β5
)n

= π

(
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1

4

;

ii.3)
∞
∑

n=0

[

1

5n + 1
+

β2
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β3
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+

β3
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(
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55
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1

4

.

Solution by the proposer

Part I. Consider the series

S(θ) =
∞
∑

n=1

sin(4n − 3)θ

n
(2 cos θ)n. (1)

The sine term can be expanded to provide

S(θ) = cos 3θ

∞
∑

n=1

sin 4nθ

n
(2 cos θ)n − sin 3θ

∞
∑

n=1

cos 4nθ

n
(2 cos θ)n. (2)

By using the two series

∞
∑

n=1

rn

n
cosnθ = −1

2
ln
(

1− 2r cos θ + r2
)

and

∞
∑

n=1

rn

n
sinnθ = tan−1

(

r sin θ

1− r cos θ

)

,

equation (2) becomes

S(θ) =
1

2
sin 3θ ln

(

1− 4 cos θ cos 4θ + 4cos2 θ
)

+ cos 3θ tan−1

(

2 cos θ sin 4θ

1− 2 cos θ cos 4θ

)

.

By setting θ = 2π/5 we may obtain that S(2π/5) equals

1

2
sin

6π

5
ln

(

1− 4 cos
2π

5
cos

8π

5
+ 4 cos2

2π

5

)

+ cos
6π

5
tan−1

(

2 cos 2π
5 sin 8π

5

1− 2 cos 2π
5 cos 8π

5

)

= − sin
π

5
ln

(

1 + 4 cos
2π

5
cos

3π

5
+ 4 cos2

2π

5

)

− cos
π

5
tan−1

(

−2 cos 2π
5 sin 3π

5

1 + 2 cos 2π
5 cos 3π

5

)

. (3)
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The values of the sine and cosine functions are given by

sin
π

5
=

√

−β
√
5

2
, cos

π

5
=

α

2
, sin

2π

5
=

√

α
√
5

2
, cos

2π

5
= −β

2
,

sin
3π

5
=

√

α
√
5

2
, cos

3π

5
=

β

2
, sin

4π

5
=

√

−β
√
5

2
.

Using the above values for the sine and cosine functions in (3), we get

S

(

2π

5

)

= −1

2
sin

π

5
ln(1− β2 + β2)− α

2
tan−1

(

2β

1− β2
sin

3π

5

)

= −α

2
tan−1

(

2β

α
sin

3π

5

)

= −α

2
tan−1



β

√√
5

α



 . (4)

Now, it can be seen that

β

√√
5

α
= −

√√
5

α3
= −

√

−β
√
5

α2
= −

1
2

√

−β
√
5

1
2α

= − tan
π

5
.

Using the above value into (4), we have

S

(

2π

5

)

= −α

2
tan−1

(

− tan
π

5

)

=
πα

10
. (5)

Alternatively, from equation (1), we have

S

(

2π

5

)

=

∞
∑

n=1

(−β)n

n
sin

2(4n − 3)π

5
.

By writing out the terms of the series we have the following:

S

(

2π

5

)

=

[

(−β) sin
2π

5
+

(−β)3

3
sin

18π

5
+

(−β)4

4
sin

26π

5
+

(−β)5

5
sin

34π

5

]

+

[

(−β)6

6
sin

42π

5
+ · · ·

]

+ · · ·

=

[

(−β) sin
2π

5
− (−β)3

3
sin

3π

5
− (−β)4

4
sin

π

5
+

(−β)5

5
sin

4π

5

]

+

[

(−β)6

6
sin

2π

5
+ · · ·

]

+ · · ·

=
∞
∑
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[

(−β)5n+1
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sin
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5
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5
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π

5
+
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5

]
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∞
∑

n=0

[
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5
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5
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5
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− β5 sin 4π

5
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(
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π

5
·

∞
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. (6)
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Equating the results for S
(

2π
5

)

from equations (5) and (6) provides

∞
∑

n=0

[

1

5n+ 1
− β2

5n+ 3
− β4

5n+ 4
− β5

5n + 5

]

(

−β5
)n

= π

(

α6

55

)
1

4

, (7)

which is the desired result.

Part II. The value of the series in question is obtained from the difference of the two series.
The values of the series are given by

∞
∑

n=0

[

1

5n+ 1
+

2

5n+ 2
+

β2

5n+ 3
+

β

5n+ 4
− β2

5n + 5

]

(

−β5
)n

= π

(

α6

53

)
1

4

(8)

from problem H-669(corrected), and

∞
∑

n=0

[

1

5n+ 1
− β2

5n + 3
− β4

5n+ 4
− β5

5n+ 5

]

(

−β5
)n

= π

(

α6

55

)
1

4

(9)

from (7) above.
Now adding equations (8) and (9) yields

S1 =
∞
∑

n=0

[

2

5n + 1
+

2

5n+ 2
+

β(1− β3)

5n+ 4
− β2(1 + β3)

5n+ 5

]

(

−β5
)n

=

∞
∑

n=0

[

2

5n + 1
+

2

5n+ 2
− 2β2

5n+ 4
− 2β4

5n + 5

]

(

−β5
)n

= 2

∞
∑

n=0

[

1

5n+ 1
+

1

5n+ 2
− β2

5n + 4
− β4

5n+ 5

]

(

−β5
)n

. (10)

The value of the series (10) is given by

S1 = π

(

α6

53

)
1

4

+ π

(

α6

55

)
1

4

= π

(

α6

55

)
1

4

(1 +
√
5) = 2π

(

α10

55

)
1

4

= 2π

(

α2

5

)
5

4

. (11)

From (10) and (11), we have

∞
∑

n=0

[

1

5n+ 1
+

1

5n+ 2
− β2

5n+ 4
− β4

5n + 5

]

(

−β5
)n

= π

(

α2

5

)
5

4

,

which is the desired result.
The second series can be obtained from the subtraction of (9) from (8). For this, we have

S2 =
∞
∑

n=0

[

2

5n + 2
+

2β2

5n+ 3
+

β(1 + β3)

5n+ 4
− β2(1− β3)

5n+ 5

]

(

−β5
)n

=

∞
∑

n=0

[

2

5n + 2
+

2β2

5n+ 3
+

2β3

5n+ 4
+

2β3

5n + 5

]

(

−β5
)n

= −2β3
∞
∑

n=0

[

α3

5n + 2
+

α

5n+ 3
− 1

5n+ 4
− 1

5n + 5

]

(

−β5
)n

. (12)
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The value is given by

S2 = π

(

α6

55

)
1

4

(
√
5− 1) = −2β3π

(

α14

55

)
1

4

. (13)

Equating the equations (12) and (13) for S2 yields

∞
∑

n=0

[

α3

5n+ 2
+

α

5n + 3
− 1

5n+ 4
− 1

5n+ 5

]

(

−β5
)n

= π

(

α14

55

)
1

4

, (14)

which is the desired result. The third series can be obtained by multiplying equation (14) by
β
α and adding the result to equation (12). When this is done, the resulting series is given by

∞
∑

n=0

[

1

5n+ 1
+

β2

5n+ 2
+

β3

5n + 3
+

β3

5n+ 4

]

(−β5)n = 2π

(

α2

55

)
1

4

.

Also solved by Paul S. Bruckman and Kenneth B. Davenport.

Congruence with Fibonacci Numbers

H-689 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 47, No. 3, August 2009/2010)

For positive integers l, m, and n such that l 6= m, prove that

Fn
mFln ≡ Fn

l Fmn (mod Fm−l).

Solution by the proposer

n
∑

k=0

(

n

k

)

F k
l ((−1)lFm−l)

n−kαmk =
n
∑

k=0

(

n

k

)

(Flα
m)k((−1)lFm−l)

n−k

= (Flα
m + (−1)lFm−l)

n = (Fl(αFm + Fm−1) + Fl+1Fm − FlFm+1)
n

= (αFlFm + FlFm−1 + Fl+1Fm − FlFm+1)
n = (αFlFm − FlFm + Fl+1Fm)n

= Fn
m(αFl + Fl−1)

n = Fn
mαln.

Similarly,
n
∑

k=0

(

n

k

)

F k
l ((−1)lFm−l)

n−kβmk = Fn
mβln.

Therefore,
n
∑

k=0

(

n

k

)

F k
l ((−1)lFm−l)

n−kFmk = Fn
mFln.

Here, we have

Fn
mFln − Fn

l Fmn =
n−1
∑

k=0

(

n

k

)

F k
l ((−1)lFm−l)

n−kFmk ≡ 0 (mod Fm−l).

Thus,
Fn
mFln ≡ Fn

l Fmn (mod Fm−l).

Also solved by Paul S. Bruckman.
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Recurrences for Alternating Sums with Even Powers of the Fibonacci Numbers

H-690 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 47.3, August 2009/2010)

Let m and n be positive integers. Put

Sm(n) =

n
∑

k=1

(−1)k(m+1)F 2m
k .

Prove that

LmSm(n) = (−1)n(m+1)Sm
1 (n)−

bm/2c
∑

i=1

i
∑

r=1

m

i

(

m− i− 1

i− 1

)(

i

r

)

Sm−r(n).

Solution by the proposer

Let k and m be positive integers. The following identity is known (see [1, p. 63]). For real
numbers a and b,

am + bm = (a+ b)m +

bm/2c
∑

i=1

m

i

(

m− i− 1

i− 1

)

(a+ b)m−2i(−ab)i. (15)

Setting a = Fk+1 and b = −Fk−1 in (15), we get

Fm
k+1 + (−Fk−1)

m = Fm
k +

bm/2c
∑

i=1

m

i

(

m− i− 1

i− 1

)

Fm−2i
k (F 2

k + (−1)k)i

= Fm
k +

bm/2c
∑

i=1

m

i

(

m− i− 1

i− 1

)

Fm−2i
k

i
∑

r=0

(

i

r

)

(−1)krF
2(i−r)
k

= Fm
k







1 +

bm/2c
∑

i=1

m

i

(

m− i− 1

i− 1

)







+

bm/2c
∑

i=1

i
∑

r=1

m

i

(

m− i− 1

i− 1

)(

i

r

)

(−1)krFm−2r
k .

Setting a = 1+
√
5

2 and b = 1−
√
5

2 in (15), we get

Lm = 1 +

bm/2c
∑

i=1

m

i

(

m− i− 1

i− 1

)

.

Therefore,

Fm
k+1 + (−Fk−1)

m = LmFm
k +

bm/2c
∑

i=1

i
∑

r=1

m

i

(

m− i− 1

i− 1

)(

i

r

)

(−1)krFm−2r
k . (16)
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We have

(−1)n(m+1)Sm
1 (n) = (−1)n(m+1)Fm

n Fm
n+1 =

n
∑

k=1

(

(−1)k(m+1)Fm
k Fm

k+1 − (−1)(k−1)(m+1)Fm
k−1F

m
k

)

=

n
∑

k=1

(−1)k(m+1)Fm
k

(

Fm
k+1 + (−Fk−1)

m
)

=

n
∑

k=1

(−1)k(m+1)Fm
k







LmFm
k +

bm/2c
∑

i=1

i
∑

r=1

m

i

(

m− i− 1

i− 1

)(

i

r

)

(−1)krFm−2r
k







= (−1)k(m+1)
n
∑

k=1







F 2m
k Lm +

bm/2c
∑

i=1

i
∑

r=1

m

i

(

m− i− 1

i− 1

)(

i

r

)

(−1)krF
2(m−r)
k







= LmSm(n) +

bm/2c
∑

i=1

i
∑

r=1

m

i

(

m− i− 1

i− 1

)(

i

r

)

Sm−r(n).

[1] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Dover, 2008.

Also solved by Paul S. Bruckman.

380 VOLUME 49, NUMBER 4


