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PROBLEMS PROPOSED IN THIS ISSUE

H-743 Proposed by Romeo Meštrović, Kotor, Montenegro.

Let p ≥ 5 be a prime and qp(2) = (2p−1− 1)/p be the Fermat quotient of p to base 2. Prove
that

qp(2) ≡ −1

2

(p−1)/2
∑

k=1

(−3)k

k
(mod p).

H-744 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

Prove that

(1) en+3−Ln+2 ≤
(

1

n

n
∑

k=1

1

Lk

)n

; (2) en+2−LnLn+1 ≤
(

1

n

n
∑

k=1

1

L2
k

)n

;

(3) en+1−Fn+2 ≤
(

1

n

n
∑

k=1

1

Fk

)n

; (4) en−FnFn+1 ≤
(

1

n

n
∑

k=1

1

F 2
k

)n

.

H-745 Proposed by Kenneth B. Davenport, SCI-Dallas, PA.

Prove that (a2 − 1) cos(n + 3)θ − 2
√
a cosnθ = (a − 1)2 cos(n + 1)θ, where a is the real

number satisfying a3 = a2 + a+ 1 and θ is given by cos θ = (1− a)
√
a/2.

H-746 Proposed by H. Ohtsuka, Saitama, Japan.

Define the generalized Fibonomial coefficient

(

n

k

)

F ;m

by

(

n

k

)

F ;m

=
FmnFm(n−1) · · ·Fm(n−k+1)

FmkFm(k−1) · · ·Fm
for 0 ≤ k ≤ n

374 VOLUME 51, NUMBER 4



ADVANCED PROBLEMS AND SOLUTIONS

with

(

n

0

)

F ;m

= 1 and

(

n

k

)

F ;m

= 0 (otherwise). Let εi = (−1)(m+1)i. For positive integers

n,m and s prove that
∑

i+j=2s

εi

(

n

i

)

F ;m

(

n

j

)

F ;m

= εs

(

n

s

)

F ;2m

.

SOLUTIONS

Fibonacci Numbers and Derivatives of Polynomials

H-717 Proposed by Samuel G. Moreno, Jaén, Spain,
(Vol. 50, No. 2, May 2012)

Prove that if p is a polynomial such that p(x) > 0 for all x ∈ R, then

deg(p)
∑

k=0

Fk+1y
kp(k)(x) > 0 for all x, y ∈ R.

Solution by the proposer.

For a fixed y ∈ R, y 6= 0, we consider the second-order linear differential equation with
constant coefficients

(I − yD − y2D2)q(x) = q(x)− yq′(x)− y2q′′(x) = p(x), (1)

in which I stands for the identity operator, and D = d/dx stands for the derivative. If α
denotes the golden ratio, the two distinct roots of the auxiliary equation of (1) are λ1 = −α/y
and λ2 = −(1− α)/y. Moreover, a particular solution of (1) is

q0(x) =
(

I − yD − y2D2
)−1

p(x) =
(

∞
∑

k=0

Fk+1 y
kDk

)

p(x)

=

deg(p)
∑

k=0

Fk+1 y
kp(k)(x).

Thus, the general solution of (1) reads q(x) = q0(x) +C1e
λ1x +C2e

λ2x. Therefore, the unique
polynomial solution of the differential equation considered is q0.

Taking into account that pmust be a polynomial of even degree, and also that the asymptotic
behavior of q0 is governed by F1y

0p(0)(x) = p(x), we observe that q0 tends to infinity as |x|
does, so there exists (at least) one absolute minimum m0 of q0 on R. Using that q′0(m0) = 0
and q′′0 (m0) ≥ 0, and using also (1), we conclude

q0(x) ≥ q0(m0) = p(m0) + (yq′0(m0) + y2q′′0 (m0)) = p(m0) + y2q′′0(m0) > 0,

for all reals x.

Also solved by Paul S. Bruckman.
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Inequalities with Fibonacci Numbers and Radicals

H-718 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 50, No. 2, May 2012)

Let An,m = F 2n−2m−3
n+m (F 4

n+m − F 4
n−m). Prove that

(1)

2n
∏

k=2m

Fk ≤ An,m for n ≥ m ≥ 1;

(2)

n
∏

k=m

F2k <
√

An,m
4

√

F 3
2m−1F2n−1F2n

F2m−3F2m−2F2n+1
for n ≥ m ≥ 2.

Solution by the proposer.

(1) Let n ≥ m ≥ 1. If n = m, then LHS = RHS = F2n.
Let n > m. We have

∏2n
k=2m Fk

F 2n−2m+1
n+m

=

2n
∏

k=2m

Fk

Fn+m
=

n−m
∏

j=0

Fn+m−j

Fn+m
· Fn+m+j

Fn+m

=

n−m
∏

j=0

F 2
n+m − (−1)n+m−jF 2

j

F 2
n+m

(By Catalan’s Identity)

=
n−m
∏

j=0

(

1−
(−1)n+m−jF 2

j

F 2
n+m

)

.

If n−m is odd,

n−m
∏

j=0

(

1−
(−1)n+m−jF 2

j

F 2
n+m

)

=

(n−m−1)/2
∏

r=0

(

1 +
F 2
2r

F 2
n+m

)(

1− F 2
2r+1

F 2
n+m

)

<

(n−m−1)/2
∏

r=0

(

1 +
F 2
2r+1

F 2
n+m

)(

1− F 2
2r+1

F 2
n+m

)

≤
(n−m−1)/2
∏

r=0

(

1− F 4
2r+1

F 4
n+m

)

≤ 1− F 4
n−m

F 4
n+m

.

If n−m is even,

n−m
∏

j=0

(

1−
(−1)n+m−jF 2

j

F 2
n+m

)

=

(n−m)/2
∏

r=0

(

1 +
F 2
2r−1

F 2
n+m

)(

1− F 2
2r

F 2
n+m

)

≤
(n−m)/2
∏

r=0

(

1 +
F 2
2r

F 2
n+m

)(

1− F 2
2r

F 2
n+m

)

≤
(n−m)/2
∏

r=0

(

1− F 4
2r

F 4
n+m

)

≤ 1− F 4
n−m

F 4
n+m

.
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Therefore, we obtain

2n
∏

k=2m

Fk ≤ F 2n−2m+1
n+m

(

1− F 4
n−m

F 4
n+m

)

= An,m.

(2) First, we have Ft−2Ft−1Ft+1Ft+2 < F 4
t by the Gelin–Cesàre Identity. Therefore, for

t ≥ 3, we have
Ft−1Ft+1

F 2
t

<
F 2
t

Ft−2Ft+2
. (1)

Let n ≥ m ≥ 2. We have
n
∏

k=m

F 2
2k

F 2
2k−1

=
F2n

F2m−2

n
∏

k=m

F2k−2F2k

F 2
2k−1

<
F2n

F2m−2

n
∏

k=m

F 2
2k−1

F2k−3F2k+1
(by (1))

=
F2m−1F2n−1F2n

F2m−3F2m−2F2n+1
.

Thus, we have
n
∏

k=m

F2k <

√

F2m−1F2n−1F2n

F2m−3F2m−2F2n+1

n
∏

k=m

F2k−1.

Multiplying both sides of this inequality by
∏n

k=m F2k, we get

n
∏

k=m

F 2
2k <

√

F2m−1F2n−1F2n

F2m−3F2m−2F2n+1

n
∏

k=m

F2k−1F2k.

Here, we have

n
∏

k=m

F2k−1F2k =

2n
∏

k=2m−1

Fk = F2m−1

2n
∏

k=2m

Fk ≤ F2m−1An,m (by (1)).

Thus, we have
n
∏

k=m

F 2
2k < An,m

√

F 3
2m−1F2n−1F2n

F2m−3F2m−2F2n+1
,

which leads to the desired inequality.

Note. We obtain the following inequality in the same manner as (2):

n
∏

k=m

F2k−1 <
√

An,m
4

√

F 3
2m−1F2n−1F2n

F2m−2F2n+1F2n+2
(for n ≥ m ≥ 2).

Also solved by Paul S. Bruckman and Dmitry Fleischman.
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Alternating Sums of High Powers of Fibonacci Numbers

H-719 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 50, No. 2, May 2012)

Let Tj(n) = (−1)n(j+1)(FnFn+1)
j . Given a positive integer m prove that there are rational

numbers λ1, . . . , λm such that
n
∑

k=1

(−1)k(m+1)F 2m
k =

m
∑

j=1

λjTj(n).

Show the identities

(1)

n
∑

k=1

(−1)kF 4
k = −2

3
T1(n) +

1

3
T2(n);

(2)

n
∑

k=1

F 6
k =

1

2
T1(n)−

1

4
T2(n) +

1

4
T3(n);

(3)

n
∑

k=1

(−1)kF 8
k = − 8

21
T1(n) +

4

21
T2(n)−

2

7
T3(n) +

1

7
T4(n).

Solution by Harris Kwong, SUNY Fredonia, NY.

Lemma. For any integer i ≥ 1, there exist rational numbers ai,` such that

F i
k = F i

k+1 + (−1)iF i
k−1 +

bi/2c
∑

`=0

ai,`(−1)k`F i−2`
k .

Equivalently, we can write

F i
k+1 + (−1)iF i

k−1 =

bi/2c
∑

`=0

bi,`(−1)k`F i−2`
k

for some rational numbers bi,`.

Proof. Induct on i. The result is obviously true when i = 1, because Fk+1 − Fk−1 = Fk. For
i ≥ 2,

F i
k = (Fk+1 − Fk−1)

i = F i
k+1 + (−1)iF i

k−1 +

i−1
∑

r=1

(−1)r
(

i

r

)

F i−r
k+1F

r
k−1.

When i is even, Casini’s identity Fk+1Fk−1 = F 2
k + (−1)k implies that the middle term in the

summation, where r = i/2, is

(−1)i/2
(

i

i/2

)

(Fk+1Fk−1)
i/2 = (−1)i/2

(

i

i/2

)

[F 2
k + (−1)k] i/2

= (−1)i/2
(

i

i/2

) i/2
∑

`=0

(

i/2

`

)

F
2(i/2−`)
k (−1)k`

=

i/2
∑

`=0

ci/2,`(−1)k`F i−2`
k ,
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where ci/2,` = (−1)i/2
( i
i/2

)(i/2
`

)

.

In general, for 1 ≤ r ≤ b(i − 1)/2c, due to symmetry, we can group the rth term with the
(i− r)th term; and it follows from the induction hypothesis that

(−1)r
(

i

r

)

F i−r
k+1F

r
k−1 + (−1)i−r

(

i

i− r

)

F r
k+1F

i−r
k−1

= (−1)r
(

i

r

)

(Fk+1Fk−1)
r[F i−2r

k+1 + (−1)i−2rF i−2r
k−1 ]

= (−1)r
(

i

r

)

(F 2
k + (−1)k]r[F i−2r

k+1 + (−1)i−2rF i−2r
k−1 ]

= (−1)r
(

i

r

)

[

r
∑

s=0

(

r

s

)

F
2(r−s)
k (−1)ks

]





b(i−2r)/2c
∑

t=0

bi−2r,t(−1)ktF i−2r−2t
k





=

bi/2c
∑

`=0

cr,`(−1)k`F i−2`
k ,

where cr,` =
∑

s+t=`(−1)r
(

i
r

)

rsbi−2r,t is a rational number. The result follows immediately. �

We now prove the original problem. The case of m = 1 is valid:

n
∑

k=1

F 2
k = FnFn+1 = T1(n).

Since F 2m
k = Fm

k · Fm
k , the lemma asserts that

n
∑

k=1

(−1)k(m+1)F 2m
k =

n
∑

k=1

(−1)k(m+1)Fm
k



Fm
k+1 + (−1)mFm

k−1 +

bm/2c
∑

`=0

am,`(−1)k`Fm−2`
k





= (−1)n(m+1)Fm
n Fm

n+1 +

bm/2c
∑

`=0

am,`

n
∑

k=1

(−1)k(m−`+1)F
2(m−`)
k .

Solving for
∑n

k=1(−1)k(m+1)F 2m
k yields the desired result from induction.

In practice, it is easier to compute the coefficients λj directly. For example, when m = 2,

F 2
k = (Fk+1 − Fk−1)

2 = F 2
k+1 + F 2

k−1 − 2Fk+1Fk−1 = F 2
k+1 + F 2

k−1 − 2F 2
k − 2(−1)k.

This leads to
n
∑

k=1

(−1)kF 4
k =

n
∑

k=1

(−1)kF 2
k (F

2
k+1 + F 2

k−1)− 2
n
∑

k=1

(−1)kF 4
k − 2

n
∑

k=1

F 2
k

= (−1)nF 2
nF

2
n+1 − 2

n
∑

k=1

(−1)kF 4
k − 2T1(n).

Thus, 3
∑n

k=1(−1)kF 4
k = T2(n)− 2T1(n), which proves (1).

In a similar manner, we find

F 3
k = F 3

k+1 − F 3
k−1 − 3Fk+1Fk−1(Fk+1 − Fk−1) = F 3

k+1 − F 3
k−1 − 3[F 2

k + (−1)k]Fk.
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Hence,
n
∑

k=1

F 6
k =

n
∑

k=1

F 3
k (F

3
k+1 − F 3

k−1)− 3

n
∑

k=1

F 6
k − 3

n
∑

k=1

(−1)kF 4
k

= F 3
nF

3
n+1 − 3

n
∑

k=1

F 6
k − 3

(

1

3
T2(n)−

2

3
T1(n)

)

.

This yields 4
∑n

k=1 F
6
k = T3(n)− T2(n) + 2T1(n), thereby proving (2).

The case of m = 4 is slightly more complicated. First we obtain

F 4
k = F 4

k+1 + F 4
k−1 − 4Fk+1Fk−1(F

2
k+1 + F 2

k−1) + 6F 2
k+1F

2
k−1

= F 4
k+1 + F 4

k−1 − 4Fk+1Fk−1[(Fk+1 − Fk−1)
2 + 2Fk+1Fk−1] + 6F 2

k+1F
2
k−1

= F 4
k+1 + F 4

k−1 − 4Fk+1Fk−1F
2
k − 2F 2

k+1F
2
k−1

= F 4
k+1 + F 4

k−1 − 4[F 2
k + (−1)k]F 2

k − 2[F 2
k + (−1)k]2

= F 4
k+1 + F 4

k−1 − 6F 4
k − 8(−1)kF 2

k − 2.

Therefore,
n
∑

k=1

(−1)kF 8
k =

n
∑

k=1

(−1)kF 4
k (F

4
k+1 + F 2

k−1)− 6
n
∑

k=1

(−1)kF 8
k − 8

n
∑

k=1

F 6
k − 2

n
∑

k=1

(−1)kF 4
k .

We conclude that
n
∑

k=1

(−1)nF 8
k =

1

7

[

T4(n)− 8

(

1

4
T3(n)−

1

4
T2(n) +

1

2
T1(n)

)

− 2

(

1

3
T2(n)−

2

3
T1(n)

)]

=
1

7
T4(n) +

2

7
T3(n) +

4

21
T2(n)−

8

21
T1(n),

which establishes (3).

Also solved by Paul S. Bruckman, Kenneth B. Davenport, Dmitry Fleischman
and Zbigniew Jakubczyk.

Late Acknowledgements. Kenneth B. Davenport, M. N. Deshpande, Harris Kwong, and
Anastasios Kotronis all solved H-716.
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