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PROBLEMS PROPOSED IN THIS ISSUE

H-777 Proposed by Kiyoshi Kawazu, Izumi Kubo and Toshio Nakata, Japan.

For any nonnegative integers n, m, l prove that
n
∑

k=0

(

n

k

)2
∑

i≥0

(

2k

i

)(

2n − 2k

m− i

)

(−1)m−i =

{(2l
l

)(2n−2l
n−l

)

if m = 2l;
0 if m = 2l + 1.

H-778 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove that
∞
∑

n=1

1

(−
√
5)nF2F4F8 · · ·F2n

=

√
5− 3

2
.

H-779 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Let
(n
k

)

F
denote the Fibonomial coefficient. For integers n ≥ 1 and r 6= 0 with n + r 6= 0,

prove that
n
∑

k=0

(−1)k(k+1)/2Fk+r

(

Fr

Fn+r

)k (n

k

)

F

= 0.

H-780 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Given real numbers r and t > 0 and an integer n ≥ 0 find a closed form expression for the
sum:

n
∑

k=0

1

fk(L
r
2k

+ t)(Lr
2k+1 + t) · · · (Lr

2n + t)
,

where f0 = t/(t+ 1) and fk = F r
2k+1 for k ≥ 1.

H-781 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Find a closed form expression for the sums:
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(i)
n
∑

k=1

(L2k ±
√
5)(L2k+1 ±

√
5) · · · (L2n ±

√
5) for n ≥ 1;

(ii)
n
∑

k=m+1

(L2k ± L2m)(L2k+1 ± L2m) · · · (L2n ± L2m) for n > m ≥ 1.

SOLUTIONS

Sums of Products of Fibonomials, Fibonacci and Lucas Numbers

H-747 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 52, No. 1, February 2014)

Let
(n
k

)

F
denote the Fibonomial coefficient. For positive integer n, find closed form expres-

sions for the sums:

(i)
∑n−1

k=0(−1)kF 2
2k (Lk+1Lk+2 · · ·Ln)

2 (2k
k

)

F
;

(ii)
∑n−1

k=0(−1)kF4k+1 (Lk+1Lk+2 · · ·Ln)
4 (2k

k

)2

F
.

Solution by Harris Kwong, SUNY, Fredonia.

Denote the given sums Sn and Tn, respectively. We shall use induction to prove that

Sn =
(−1)n−1F2nF2n−2

2

(

2n

n

)

F

, and Tn = (−1)n−1F 2
2n

(

2n

n

)2

F

.

(i) The definition states that S1 = F 2
0L

2
1

(0
0

)

F
= 0, and the formula says S1 =

1
2 F2F0

(2
1

)

F
= 0.

This verifies the base case n = 1. Assume the formula holds for some integer n ≥ 1. Then,
because Ln+1Fn+1 = F2n+2, and 2F2n − F2n−2 = F2n+1, we obtain

Sn+1 = L2
n+1

[

Sn + (−1)nF 2
2n

(

2n

n

)

F

]

= L2
n+1

[

(−1)n−1F2nF2n−2

2
+ (−1)nF 2

2n

](

2n

n

)

F

=
(−1)nL2

n+1F2n(2F2n − F2n−2)

2
· F 2

n+1

F2n+2F2n+1

(

2n + 2

n+ 1

)

F

=
(−1)nF2n+2F2n

2

(

2n+ 2

n+ 1

)

F

,

thereby completing the induction.

(ii) The definition states that T1 = F1L
4
1

(

0
0

)2

F
= 1, which agrees with the formula T1 = F 2

2

(

2
1

)2

F
.

Noting that Ln+1Fn+1 = F2n+2 and F4n+1 − F 2
2n = F 2

2n+1, we establish the inductive step as
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follows:

Tn+1 = L4
n+1

[

Tn + (−1)nF4n+1

(

2n

n

)2

F

]

= L4
n+1

[

(−1)n−1F 2
2n + (−1)nF4n+1

]

(

2n

n

)2

F

= (−1)nL4
n+1

(

F4n+1 − F 2
2n

)

(

F 2
n+1

F2n+2F2n+1

)2(
2n+ 2

n+ 1

)2

F

= (−1)nF 2
2n+2

(

2n+ 2

n+ 1

)2

F

.

Also solved by the proposer.

Some Nesbitt Type Inequalities With Fibonacci and Lucas Numbers

H-748 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.
(Vol. 52, No. 1, February 2014)

Let xk = Lk, yk = Fk, k = 1, . . . ,m, xm+1 = x1, ym+1 = y1. Prove that:

2

Fn+2
+

m
∑

k=1

x3k
Fn+1xk + Fnxk+1

≥ LmLm+1

Fn+2
;

m
∑

k=1

y3k
Lmyk + Lm+1yk+1

≥ FmFm+1

Lm+2

for every positive integer n.

Solution by Ángel Plaza, Gran Canaria, Spain.

Both inequalities are consequence of the following Nesbitt type more general inequality
where the left-hand side sum is cyclic

m
∑

k=1

x3k
axk + bxk+1

≥
∑m

k=1 x
2
k

a+ b
.

Then the left-hand side of the fist equation, LHS is

LHS ≥ 2

Fn+2
+

∑m
k=1 x

2
k

Fn + Fn+1

=
2 + LmLm+1 − 2

Fn+2

=
LmLm+1

Fn+2
,

where we have used that
∑m

k=1 L
2
k = LmLm+1 − 2.

The second inequality is proved in the same way by now using that

m
∑

k=1

F 2
k = FmFm+1.

Also solved by Dmitry Fleischman and the proposers.

374 VOLUME 53, NUMBER 4



HYPERGEOMETRIC TEMPLATE

Identities With Sums of Ratios of Fibonacci Numbers and Products of Them

H-749 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 52, No. 1, February 2014)

Let a, b, c and d be odd positive integers. If a+ b = c+ d, prove that

b
∑

k=1

Fa

FkFk+a
+

a
∑

k=1

Fb

FkFk+b
=

d
∑

k=1

Fc

FkFk+c
+

c
∑

k=1

Fd

FkFk+d
.

Solution by Ángel Plaza, Gran Canaria, Spain.

We use the following reduction formula [1, Theorem 6]

N
∑

k=1

1

FkFk+a
=

1

Fa

ba/2c
∑

k=1

(

1

FN+2kFN+2k+1
− 1

F2kF2k+1

)

+
KN

Fa
,

with KN =

N
∑

k=1

1

FkFk+1
. Therefore, the LHS and the RHS of the proposed identity are,

respectively

LHS =

ba/2c
∑

k=1

(

1

Fb+2kFb+2k+1
− 1

F2kF2k+1

)

+Kb

+

bb/2c
∑

k=1

(

1

Fa+2kFa+2k+1
− 1

F2kF2k+1

)

+Ka

RHS =

bc/2c
∑

k=1

(

1

Fd+2kFd+2k+1
− 1

F2kF2k+1

)

+Kd

+

bd/2c
∑

k=1

(

1

Fc+2kFc+2k+1
− 1

F2kF2k+1

)

+Kc.

Since a, b, c and d are odd positive integers with a+ b = c+ d we may assume that a = 2α+1,
c = a + 2m, b = 2β + 1 and d = b − 2m. Then ba/2c = α, bb/2c = β, bc/2c = α + m, and
bd/2c = β −m. Previous expressions for LHS and RHS are now

LHS =

α
∑

k=1

(

1

Fb+2kFb+2k+1
− 1

F2kF2k+1

)

+

b
∑

k=1

1

FkFk+1

+

β
∑

k=1

(

1

Fa+2kFa+2k+1
− 1

F2kF2k+1

)

+
a
∑

k=1

1

FkFk+1

RHS =
α+m
∑

k=1

(

1

Fb−2m+2kFb−2m+2k+1
− 1

F2kF2k+1

)

+
b−2m
∑

k=1

1

FkFk+1

+

β−m
∑

k=1

(

1

Fa+2m+2kFa+2m+2k+1
− 1

F2kF2k+1

)

+

a+2m
∑

k=1

1

FkFk+1
,
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where after cancelling common terms we have to prove that LHS∗ = RHS∗:

LHS∗ =

b
∑

k=b−2m+1

1

FkFk+1
+

m
∑

k=1

1

Fa+2kFa+2k+1

RHS∗ =
m
∑

k=1

1

Fb−2m+2kFb−2m+2k+1
+

a+2m
∑

k=a+1

1

FkFk+1
,

which are clearly the same.

References
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Also solved by the proposer.

Identities With Generalized Tribonacci Recurrences

H-750 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 52, No. 1, February 2014)

Generalized Tribonacci sequences {Rn} and {Sn} are defined by

Rn+3 = pRn+2 + qRn+1 + rRn (for n ≥ 0);

Sn+3 = pSn+2 + qSn+1 + rSn (for n ≥ 0),

with arbitrary p, q, r,R0, R1, R2, S0, S1, S2. For positive integers a, b, c, d such that a+b = c+d,
prove that

Ra+3Sb+3+qRa+2Sb+2+prRa+1Sb+1−r2RaSb = Rc+3Sd+3+qRc+2Sd+2+prRc+1Sd+1−r2RcSd.

Solution by the proposer.

We have

Ra+3Sb+3 −Ra+2Sb+4 + qRa+2Sb+2 − qRa+1Sb+3

= Sb+3(Ra+3 − qRa+1)−Ra+2(Sb+4 − qSb+2)

= Sb+3(pRa+2 + rRa)−Ra+2(pSb+3 + rSb+1)

= rSb+3Ra − rRa+2Sb+1

= r(pSb+2 + qSb+1 + rSb)Ra − r(pRa+1 + qRa + rRa−1)Sb+1

= r2RaSb − r2Ra−1Sb+1 − prRa+1Sb+1 + prRaSb+2.

Thus,

Ra+3Sb+3 + qRa+2Sb+2 + prRa+1Sb+1 − r2RaSb

= Ra+2Sb+4 + qRa+1Sb+3 + prRaSb+2 − r2Ra−1Sb+1.

Letting Aa,b = Ra+3Sb+3+qRa+2Sb+1+prSa+1Sb+1−r2RaSb, we have Aa,b = Aa−1,b+1. Using
this identity repeatedly,

· · · = Aa+2,b−2 = Aa+1,b−1 = Aa,b = Aa−1,b+1 = Aa−2,b+2 = · · · .
Thus, we have Aa,b = Aa−j,b+j. That is, Aa,b = Ac,d for a + b = c + d. Therefore we obtain
the desired identity.
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Also solved by Dmitry Fleischman.

An Inequality With Sums of Binomial Coefficients and Fibonacci Numbers

H-751 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.
(Vol. 52, No. 2, May 2014)

Prove that
(

F 2n
m+1 +

(

2n+1
1

)

F 2n−1
m+1 Fm + · · · +

(

2n+1
n

)

Fn
m+1F

n
m

Fm

)p+1

+

(
(2n+1
n+1

)

Fn
m+1F

n
m + · · ·+

(2n+1
2n

)

Fm+1F
2n−1
m

Fm+1

)p+1

≥ 1

2p

(

F 2n+1
m+2

FmFm+1

)p+1

holds for any p ≥ 0 and positive integers m and n, and that the same inequality holds with
all the F ’s replaced by L’s.

Solution by Harris Kwong, SUNY, Fredonia.

The left-hand side of the inequality is in the form of yp+1
1 + yp+1

2 , where

y1 =
F 2n
m+1 +

(2n+1
1

)

F 2n−1
m+1 Fm + · · · +

(2n+1
n

)

Fn
m+1F

n
m

Fm

[3pt]y2 =

(

2n+1
n+1

)

Fn
m+1F

n
m + · · ·+

(

2n+1
2n

)

Fm+1F
2n−1
m + F 2n

m

Fm+1
.

Notice that
FmFm+1(y1 + y2) = (Fm+1 + Fm)2n+1 = F 2n+1

m+2 .

For any positive numbers x1, x2, . . . , xk, it is well-known that

f(r) =

(

xr1 + xr2 + · · ·+ xrk
k

)
1

r

is an increasing function of r. Hence,
(

yp+1
1 + yp+1

2

2

)
1

p+1

≥ y1 + y2
2

=
1

2

(

F 2n+1
m+2

FmFm+1

)

,

from which the desired inequality follows immediately, and it is clear that it also holds when
all the F ’s are replaced by L’s.

Also solved by Dmitry Fleischman, Kenneth B. Davenport, Zbigniew Jakubczyk,
Ángel Plaza, and the proposers.

Errata: In the statement of Advanced Problem H-751, there was an additional term
“+F 2n

m ” in the numerator of the second fraction is the left–hand side of the inequality to be
proven. The present solution takes this into account.
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