ADVANCED PROBLEMS AND SOLUTIONS

Edited by
Florian Luca

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, IMATE, UNAM, AP. POSTAL 61-3 (XANGARI), CP 58089 , MORELIA, MICHOACAN, MEXICO, or by e-mail at fluca@matmor.unam.mx as files of the type tex, dvi, ps, doc, html, pdf, etc. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, all solutions sent by regular mail should be submitted on separate signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

H-627 Proposed by Slavko Simic, Belgrade, Yugoslavia

Find all sequences $c=\left\{c_{i}\right\}_{i=1}^{n}, c_{i}=c_{i}(n)$ such that the inequality

$$
\left|x^{*}-\sum_{i=1}^{n} c_{i} x_{i}\right| \leq \sqrt{n-1} \sqrt{\sum_{i=1}^{n} c_{i} x_{i}^{2}-\left(\sum_{i=1}^{n} c_{i} x_{i}\right)^{2}}
$$

holds for all sequences $x=\left\{x_{i}\right\}_{i=1}^{n}$ of arbitrary real numbers and arbitrary $x^{*} \in x$.

H-628 Proposed by Juan Pla, Paris, France

Let us consider the set S of all the sequences $\left\{U_{n}\right\}_{n \geq 0}$ satisfying a second order linear recurrence

$$
U_{n+2}-a U_{n+1}+b U_{n}=0,
$$

with both a and b rational integers, and having only integral values. Prove that for infinitely many of these sequences their general term U_{n} is a sum of three cubes of integers for any value of the subscript n.

H-629 Proposed by Ernst Herrmann, Siegburg, Germany

Consider the sequence $\left(a_{n}\right)_{n \geq 0}$ of non-negative integers which are defined by $a_{0}=a_{1}=$ $0, a_{2}=1$ and by the recurrence relation $a_{n}=a_{n-2}+a_{n-3}$ if $n \geq 3$. Prove that the numbers of the sequence $\left(a_{n}\right)_{n \geq 0}$ can also be defined by the relation

$$
-0.5<a_{n+2}-a_{n+1}^{2} / a_{n}<0.5
$$

for all sufficiently large n; i.e., for all $n \geq n_{0}$. Thus, a_{n+2} is uniquely defined if a_{n}, a_{n+1} and a_{n+2} fulfill the relation. Determine the smallest possible value n_{0}.

H-630 Proposed by Mario Catalani, Torino, Italy

Let $F_{n}(x, y)$ be the bivariate Fibonacci polynomials, defined, for $n \geq 2$, by $F_{n}(x, y)=$ $x F_{n-1}(x, y)+y F_{n-2}(x, y)$, where $F_{0}(x, y)=0, F_{1}(x, y)=1$. Assume $x y \neq 0$ and $x^{2}+4 y \neq 0$.

1. Prove the following identity

$$
x \sum_{k=0}^{n-1}\binom{2 n-1-k}{k}\left(x^{2}+4 y\right)^{n-k-1}(-y)^{k}=F_{2 n}(x, y) .
$$

2. Let

$$
a_{n}=\sum_{k=0}^{n-1}\binom{2 n-1-k}{k}(-3)^{n-k-1} .
$$

Find a recurrence and a closed form for a_{n}.

SOLUTIONS

Binomial sums yielding Fibonacci and Lucas numbers

H-570 Proposed by H.-J. Sieffert, Berlin, Germany

(Vol. 39, no. 1, February 2001)
Show that, for all positive integers n :
(a)

$$
5^{n-1} F_{2 n-1}=\sum_{\substack{k=0 \\ 5 \nmid 2 n-k-1}}^{2 n-1}(-1)^{k}\binom{4 n-2}{k} ;
$$

(b)

$$
5^{n-1} L_{2 n}=\sum_{\substack{k=0 \\ 5+2 n-k}}^{2 n}(-1)^{k+1}\binom{4 n}{k} .
$$

Two closely related identities were given in H-518.

Solution by the proposer

Let $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$. Define the Fibonacci polynomials by $F_{0}(x)=$ $0, F_{1}(x)=1$ and $F_{n+1}(x)=x F_{n}(x)+F_{n-1}(x)$ for $n \geq 1$. If $A_{n}:=i^{n-1} F_{n}(i \alpha)$, with $n \geq 0$, where $i=\sqrt{-1}$, then $A_{n+1}=-\alpha A_{n}-A_{n-1}$ and a simple induction argument yields

$$
A_{n}=\left\{\begin{align*}
0 & \text { if } n \equiv 0(\bmod 5), \tag{1}\\
1 & \text { if } n \equiv 1(\bmod 5), \\
-\alpha & \text { if } n \equiv 2(\bmod 5), \\
\alpha & \text { if } n \equiv 3(\bmod 5), \\
-1 & \text { if } n \equiv 4(\bmod 5) .
\end{align*}\right.
$$

Let n be a positive integer. From H-518 (identity (7)), we know that, for all complex numbers x,

$$
\sum_{k=0}^{n}\binom{2 n}{n-k} F_{k}(x)^{2}=\left(x^{2}+4\right)^{n-1}
$$

Since $4-\alpha^{2}=-\sqrt{5} \beta$, with $x=i \alpha$, we find

$$
\sum_{k=0}^{n}(-1)^{k-1}\binom{2 n}{n-k} A_{k}^{2}=(-\sqrt{5} \beta)^{n-1}
$$

Hence, by (1),

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k-1}\binom{2 n}{n-k} c_{k}+\alpha^{2} \sum_{k=0}^{n}(-1)^{k-1}\binom{2 n}{n-k} d_{k}=(-\sqrt{5} \beta)^{n-1} \tag{2}
\end{equation*}
$$

where

$$
c_{k}=\left\{\begin{array}{ll}
1 & \text { if } k \equiv 1 \text { or } 4(\bmod 5), \\
0 & \text { otherwise },
\end{array} \quad \text { and } \quad d_{k}= \begin{cases}1 & \text { if } k \equiv 2 \text { or } 3(\bmod 5), \\
0 & \text { otherwise },\end{cases}\right.
$$

Let S_{n} and T_{n} denote the first and the second sum on the left hand side of (2), respectively. Then, $S_{n}+\alpha^{2} T_{n}=(-\sqrt{5} \beta)^{n-1}$. Since $\alpha^{2}=(3+\sqrt{5}) / 2, \beta^{n-1}=\left(L_{n-1}-\sqrt{5} F_{n-1}\right) / 2$, and since $\sqrt{5}$ is an irrational number, from (2), we find

$$
2 S_{n}+3 T_{n}=\left\{\begin{align*}
5^{(n-1) / 2} L_{n-1} & \text { if } n \text { is odd } \tag{3}\\
5^{n / 2} F_{n-1} & \text { if } n \text { is even }
\end{align*}\right.
$$

and

$$
T_{n}= \begin{cases}-5^{(n-1) / 2} F_{n-1} & \text { if } n \text { is odd } \tag{4}\\ -5^{(n-2) / 2} L_{n-1} & \text { if } n \text { is even }\end{cases}
$$

Substracting (4) from (3), noting that $L_{n-1}+F_{n-1}=2 F_{n}$ and $5 F_{n-1}+L_{n-1}=2 L_{n}$, and dividing by 2 , we obtain

$$
S_{n}+T_{n}= \begin{cases}5^{(n-1) / 2} F_{n} & \text { if } n \text { is odd } \\ 5^{(n-2) / 2} L_{n} & \text { if } n \text { is even }\end{cases}
$$

The stated identities now follow if writing $2 n-1$ respectively $2 n$ instead of n; note that $c_{k}+d_{k}=1$ if $5 \nmid k$, and $c_{k}+d_{k}=0$ if $5 \mid k$. The known and easily verified identity

$$
\sum_{k=0}^{m}(-1)^{k}\binom{n}{k}=(-1)^{m}\binom{n-1}{m}, \quad 1 \leq m \leq n
$$

with $m=2 n-1$ and n replaced by $4 n-2$, implies that (a) is equivalent to

$$
5^{n-1} F_{2 n-1}=-\binom{4 n-3}{2 n-1}+\sum_{j=0}^{\lfloor(2 n-1) / 5\rfloor}(-1)^{j}\binom{4 n-2}{2 n-5 j-1} .
$$

Similarly, (b) can be rewritten as

$$
5^{n-1} L_{2 n}=-\binom{4 n-1}{2 n}+\sum_{j=0}^{\lfloor 2 n / 5\rfloor}(-1)^{j}\binom{4 n}{2 n-5 j} .
$$

A Cyclic Determinant

H-615 Proposed by Paul S. Bruckman, Sointula, Canada

(Vol. 42, no. 4, November 2004)

Given $n \geq 1$ and complex numbers $x_{0}, x_{1}, \ldots, x_{n-1}$, define the "cyclical" matrix

$$
\boldsymbol{A}_{n}=\left|\begin{array}{cccccc}
x_{0} & x_{1} & x_{2} & \ldots & x_{n-2} & x_{n-1} \\
x_{n-1} & x_{0} & x_{1} & \ldots & x_{n-3} & x_{n-2} \\
x_{n-2} & x_{n-1} & x_{0} & \ldots & x_{n-4} & x_{n-3} \\
\cdot & \cdot & \cdot & \ldots & \cdot & \cdot \\
x_{1} & x_{2} & x_{3} & \ldots & x_{n-1} & x_{0}
\end{array}\right| .
$$

Let D_{n} denote the determinant of \boldsymbol{A}_{n}, and $s_{n}=x_{0}+x_{1}+\cdots+x_{n-1}$. Prove that if the x_{k} 's are integers such that $s_{n} \neq 0$, then $s_{n} \mid D_{n}$.

Solution by H.-J. Seiffert, Berlin, Germany

Adding the second, third, fourth, \ldots and last row to the first row in D_{n}, we arrive to the determinant E_{n}, whose entries of the first row are all equal to s_{n}, and having the same value as D_{n}. Extracting s_{n} gives $E_{n}=s_{n} F_{n}$, where F_{n} is obtained from E_{n} by replacing each entry of the first row by 1 . If the x_{k} 's are integers, then F_{n} is an integer, so that the desired result follows from $D_{n}=E_{n}=s_{n} F_{n}$.

Editor's Comment. Most solvers used the known fact that

$$
D_{n}=\prod_{\left\{\zeta: \zeta^{n}=1\right\}}\left(\sum_{i=0}^{n-1} x_{i} \zeta^{i}\right)
$$

where the above product is over all the roots ζ of order n of 1 , together with the observation that s_{n} is the factor corresponding to $\zeta=1$, to infer that if the x_{k} 's are integers, then D_{n} / s_{n} is both a rational number and an algebraic integer, therefore an integer.

Also solved by Gökçen Alptekýn, Ovidiu Furdui, Russel J. Hendel and the proposer.

On the parity of the Catalan numbers

H-616 Proposed by Paul S. Bruckman, Sointula, Canada

(Vol. 42, no. 4, November 2004)
Let $C_{n}=\frac{1}{n+1}\binom{2 n}{n}, n=0,1, \ldots$ be the nth Catalan number (known to be an integer).
Prove that C_{n} is odd if and only if $n=2^{u}-1$, where $u=0,1, \ldots$.
Editor's Comment. Several solvers pointed out that this is a known result. For example, H.-J. Seiffert refers to [1], while Bruce Sagan (via Emeric Deutsch) supplies five references including [1]. The problem was also solved by Art Benjamin, Charles Cook, Graham Lord and the proposer.

1. Ö. Eğecioğlu, "The parity of the Catalan numbers via lattice paths", The Fibonacci Quarterly 21.1 (1983): 65-66.

Correction. In the solution to problem H-606 (The Fibonacci Quarterly 43.1 (2005): 93-94) the correct formula for S_{n} on page 94 is

$$
S_{n}=2 \sin \left(\frac{(2 n+1)}{6}\right)-\frac{1}{2}(-1)^{\lfloor n / 2\rfloor}\left(1-(-1)^{n}\right) .
$$

