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PROBLEMS PROPOSED IN THIS ISSUE

H-631 Proposed by Jayantibhai M. Patel, Ahmedabad, India
For any positive integer n ≥ 2, prove that the value of the following determinant
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H-632 Proposed by Paul S. Bruckman, Sointula, Canada
Prove the following identities:

1. 1 +
∞∑

n=1

(−1)n 5−n/2αn(3n−1)/2

F1F2 . . . Fn
=

∞∏
n=0

{
1 + 4(−1)nα−10n−5 − α−20n−10

}−1
.

2. 1 +
∞∑

n=1

(−1)n 5−n/2αn(3n+1)/2

F1F2 . . . Fn
=

∞∏
n=0

{
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}−1
.

Here, α is the golden section.

H-633 Proposed by Kenneth B. Davenport, Dallas, PA

Let A, B and C be A =
∞∑

n=0

(−1)n
( 1

7n + 1
+

1
7n + 6

)
, B =

∞∑
n=0
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∞∑
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)
. Show that A + B = C.
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H-634 Proposed by Ovidiu Furdui, Kalamazoo, MI

Prove that
b(n−1)/2c∑

j=0

1
n− 2j

(
n− j − 1

j

)
=

αn − 1
n

+
βn − (−1)n

n
holds for all n ≥ 1,

where α = (1 +
√

5)/2 and β = (1−
√

5)/2.

SOLUTIONS

Fibonacci polynomials and trigonometric functions

H-617 Proposed by H.-J. Seiffert, Berlin, Germany
(Vol. 42, no. 4, November 2004)

The sequence of Fibonacci polynomials is defined by F0(x) = 0, F1(x) = 1, and Fn+2(x) =
xFn+1(x) + Fn(x) for n ≥ 0. Show that, for all real numbers x and all nonnegative integers n,

(a)
2n∑

k=0

(−1)bk/2c
(

2n

k

)
Fk(x) =

√
2(−1)n(x2 + 4)n/2Fn(x) cos

(
ny +

π

4

)
,

(b)
2n∑

k=0

(−1)dk/2e
(

2n

k

)
Fk(x) =

√
2(−1)n(x2 + 4)n/2Fn(x) sin

(
ny +

π

4

)
,

where y = arccos
x√

x2 + 4
. Here, b.c and d.e denote the floor and ceiling function, respectively.

Solution by the proposer

It is known that Fj(x) = (α(x)j − β(x)j)/
√

x2 + 4, where αj(x) = (x +
√

x2 + 4)/2 and
βj(x) = (x−

√
x2 + 4)/2. If i =

√
−1, then, by the Binomial Theorem,

Sn(x) :=
2n∑

j=0

(−i)j

(
2n

j

)
Fj(x) =

1√
x2 + 4

2n∑
j=0

(
2n

j

)(
(−iα(x))j − (−iβ(x))j

)
,

so

Sn(x) =
(1− iα(x))2n − (1− iβ(x))2n

√
x2 + 4

.

Since 1−α(x)2 = −xα(x) and 1−β(x)2 = −xβ(x), we have that (1− iα(x))2 = −α(x)(x+2i)
and (1 − iβ(x))2 = −β(x)(x + 2i). It follows that Sn(x) = (−1)nFn(x)(x + 2i)n. Using
cos y = x/

√
x2 + 4, sin y = 2/

√
x2 + 4, and Euler’s relation eiy = cos y + i sin y, we then have

Sn(x) = (−1)n(x2 + 4)n/2Fn(x)einy.
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Equating the real and imaginary parts give

Un(x) := ReSn(x) =
n∑

k=0

(−1)k

(
2n

2k

)
F2k(x) = (−1)n(x2 + 4)n/2Fn(x) cos(ny),

and

Vn(x) := ImSn(x) =
n−1∑
k=0

(−1)k+1

(
2n

2k + 1

)
F2k+1(x) = (−1)n(x2 + 4)n/2Fn(x) sin(ny).

Obviously, the sum of (a) equals Un(x)−Vn(x), while the sum of (b) is Un(x)+Vn(x), so that
the desired identities follow from the addition laws of the cosine and the sine.
Example. Since arccos(1/

√
2) = π/4, with x = 2 we obtain

2n∑
k=0

(−1)bk/2c
(

2n

k

)
Pk = (−1)n2(3n+1)/2Pn cos

( (n + 1)π
4

)
,

and

2n∑
k=0

(−1)dk/2e
(

2n

k

)
Pk = (−1)n2(3n+1)/2Pn sin

( (n + 1)π
4

)
,

where Pk = Fk(2) is the kth Pell number.

Also solved by Paul S. Bruckman and Kenneth B. Davenport.

The Exponential Function Revisited

H-618 Proposed by Slavko Simic, Mathematical Institute SANU, Belgrade
(Vol. 43, no. 1, February 2005)

Prove that there exists a constant c ≥ 2.5 such that the inequality

ex ≥ 1 + xα

holds for each x ≥ 0 if and only if α ∈ [1, c]. What is the value of c?
Solution by the proposer

It is clear that if α ≤ 0, then the stated inequality is false if x is a small positive real
number (as ex tends to 1 when x > 0 tends to zero, while xα ≥ 1). It is also false when
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0 < α < 1 at the point x0 = exp(1/(α − 1)) > 0 since for this value of x0 we have x0 < 1,
therefore

ex0 − 1 ≤ x0e
x0 < ex0 = xα

0 .

For α = 1, the inequality becomes the familiar one ex ≥ 1 + x. Finally, we show that the
inequality holds with α = 2.5. If x ∈ [0, 1], then ex − 1 ≥ x ≥ x2.5. If x > 1, then

ex − 1− x2.5 = x
( ∞∑

n=0

xn

(n + 1)!
− x1.5

)
> x

(
1 +

x

2
+

x2

6
+ x3

(∑
n≥4

1
n!

)
− x1.5

)
.

By the AGM inequality, x/2 + x2/6 ≥ x1.5/
√

3. Hence,

ex−1−x2.5 > x
(
1−

(
1− 1√

3

)
x1.5+x3

(
e− 8

3

))
= x

((
1− (3−

√
3)x1.5

6

)2

+x3
(
e−3+

√
3

6

))
,

and since e− 3 +
√

3
6

= 0.006 . . . > 0, the proof is complete.

Comment. Looking at the graph of y = ex − 1 − xα, we see that the best value of c is the
one for which the tangent at α = c is the x-axis. Hence, c is the common solution of the two
equations ex − 1− xc = 0 and ex − cxc−1 = 0, which is c = 2.632748338 . . . .

Also solved by Kenneth Davenport.

A 5× 5 Determinant

H-619 Proposed by Jayantibhai M. Patel, Ahmedabad, India
(Vol. 43, no. 1, February 2005)

For any positive integer n ≥ 2, prove that the value of the following determinant

∣∣∣∣∣∣∣∣∣
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n) 2Fn−1Fn 2Fn−2Fn
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n+1) 2Fn−2Fn−1
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n)

∣∣∣∣∣∣∣∣∣
is (6F 2

n + L2
n)5.

Solution by Harris Kwong, SUNY Fredonia, Fredonia, NY

Let A be the underlying matrix of the given determinant. We shall find its eigenvectors,
and show that the eigenvalues are λ with multiplicity one and −λ with multiplicity four, where
λ = 6F 2

n + L2
n.
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First, we need to derive two identities, both of which rely on the following result:

2F 2
n+1 + 2F 2

n−1 = (Fn+1 − Fn−1)2 + (Fn+1 + Fn−1)2 = F 2
n + L2

n.

Together with Ln = Fn+1 + Fn−1 = Fn + 2Fn−1, we find that

2F 2
n+2 + 6F 2

n−1 − L2
n = 2(Fn+1 + Fn)2 + 6F 2

n−1 − (Fn + 2Fn−1)2

= 2(F 2
n+1 + F 2

n−1) + F 2
n + 4Fn(Fn+1 − Fn−1) = 6F 2

n + L2
n. (1)

Likewise, since Ln = Fn+1 + Fn−1 = 2Fn+1 − Fn, we also have

2F 2
n−2 + 6F 2

n+1 − L2
n = 2(Fn − Fn−1)2 + 6F 2

n+1 − (2Fn+1 − Fn)2

= F 2
n + 2(F 2

n−1 + F 2
n+1) + 4Fn(Fn+1 − Fn−1) = 6F 2

n + L2
n. (2)

Using identities (1) and (2), we can write

A = −λI + 2uuT ,

where u is the vector (Fn+2, Fn+1, Fn, Fn−1, Fn−2)T . Note that

uT u = F 2
n+2 + F 2

n+1 + F 2
n + F 2

n−1 + F 2
n−2 = (Fn+1 + Fn)2 + F 2

n+1 + F 2
n + F 2

n−1 + (Fn −Fn−1)2

= 2(F 2
n+1 + F 2

n−1) + 3F 2
n + 2Fn(Fn+1 − Fn−1) = 6F 2

n + L2
n.

Hence,
Au = (−λI + 2uuT )u = −λu + 2λu = λu;

in other words, u is an eigenvector of A corresponding to the eigenvalue λ. For n ≥ 3, define
the vectors

v1 = (Fn−2, 0, 0, 0,−Fn+2)T ,

v2 = (0, Fn−2, 0, 0,−Fn+1)T ,

v3 = (0, 0, Fn−2, 0,−Fn)T ,

v4 = (0, 0, 0, Fn−2,−Fn−1)T ;

but for n = 2, define
v1 = (1, 0, 0,−3, 0)T ,

v2 = (0, 1, 0,−2, 0)T ,

v3 = (0, 0, 1,−1, 0)T ,

v4 = (0, 0, 0, 0, 1)T .

It is easy to verify that uT vi = 0 for each i. Hence,

Avi = (−λI + 2uuT )vi = −λvi;

consequently, vi are the eigenvectors of A corresponding to the eigenvalue −λ. It is obvious
that {u,v1,v2,v3,v4} is an independent set, therefore the determinant of A is λ5.
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Correction. In the statement of this problem (The Fibonacci Quarterly 43.1 (2005):
91), the entry (5, 4) of the determinant was erroneously written as “2Fn−1Fn+2” instead of
“2Fn−1Fn−2”.

Also solved by Paul S. Bruckman.

A Trigonometric Inequality

H-620 Proposed by José Luis Dı́az-Barrero, Barcelona, Spain and Óscar Ciaurri
Ramı́rez, Logroño, Spain

(Vol. 43, no. 1, February 2005)
Let ABC be a triangle. Prove that the following inequality holds for α ∈ [0, π/2):

√
Fn+1Fn+2 cos(C − α) +

√
Fn+2Fn cos(B − α) +

√
FnFn+1 cos(A− α) ≤ 2Fn+2 cos

(π

3
− α

)
.

Solution by H.-J. Seiffert, Berlin, Germany

If u, v and w are any nonnegative real numbers, then (see [1], inequality (5.2) on page
424 and inequality (6.6) on page 428)

√
uv cos C +

√
vw cos B +

√
wu cos A ≤ 1

2
(u + v + w),

and

√
uv sinC +

√
vw sinB +

√
wu sinA ≤

√
3

2
(u + v + w).

Multiplying the first inequality by cos α and the second by sin α and adding the resulting
inequalities gives

√
uv cos(C − α) +

√
vw cos(B − α) +

√
wu cos(A− α) ≤ (u + v + w) cos

(π

3
− α

)
,

where we have used the known trigonometric relations cos(π/3) = 1/2, sin(π/3) =
√

3/2, and
the addition formula for the cosine. Taking u = Fn+2, v = Fn+1 and w = Fn, where n ≥ −1
yields the desired inequality.
[1] D.S. Mitrinović, J.E. Pec̆arić and A.M. Fink, “Classical and New Inequalities in Analysis”,
Kluwer Academic Publishers, Dordrecht, 1993.

Also solved by Paul S. Bruckman, G. C. Greubel, Ovidiu Furdui and the proposers.

Late Acknowledgement. Kenneth B. Davenport solved H-613.

Errata. In H-629, the inequality “< 0.5” should be “≤ 0.5”.
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