1.1. Every third Fibonacci number is even; every fourth, a multiple of 3 ; every fifth, a multiple of 5 .
1.2. Every nth Fibonacci number is divisible by F_{n}.
1.3. d is the greatest common divisor of a and b if and only if
(i) $d|a, d| b$, and
(ii) if $k \mid a$ and $k \mid b$, then $k \mid d$.
1.4. $987=9 \times 100+8 \times 10+7$
$=9 \times(99+1)+8 \times(9+1)+7$
$=(9 \times 99)+\underline{9}+(8 \times 9)+\underline{8}+\underline{7}$
$=9 \times(99+8)+(9+8+7)-$
Since the first term is a multiple of 9,987 will be divisible by 9 if and only if $9+8+7$ is a multiple of 9 .
1.5. One need only try the primes not exceeding the greatest integer equal to or less than the square root of 4181 or $64+$. How many primes are less than 64 ?
1.6. The number in the i-th row and j-th column is given by the formula

$$
(2 j+1) i+j
$$

(a) If N is in S , then $2 \mathrm{~N}+1$ is of the form

$$
\begin{aligned}
& 2\{(2 j+1) i+j\}+1=4 i j+2 i+2 j+1=(2 i+1)(2 j+1) \\
& \quad=\text { a composite number. }
\end{aligned}
$$

(b) To prove that if N is not in S , then $2 \mathrm{~N}+1$ is a prime we consider an equivalent statement (called the contrapositive): If $2 \mathrm{~N}+1$ is not a prime, then N is in S .

Now if $2 \mathrm{~N}+1$ is not a prime, it has an odd factor $2 \mathrm{i}^{\prime}+1$ (which is between 1 and $2 \mathrm{~N}+1$). Thus

$$
2 N+1=\left(2 j^{\prime}+1\right)\left(2 i^{\prime}+1\right)=2\left\{\left(2 j^{\prime}+1\right) i^{\prime}+j^{\prime}\right\}+1
$$

or $N=\left(2 j^{\prime}+1\right) i^{\prime}+j^{\prime}$, i.e., N lies in row i^{\prime} and column ${ }^{\prime}$.

