FIBONACCI NUMBERS AND ZIGZAG HASSE DIAGRAMS*

A. P. HILLMAN, M.T. STROOT, AND R.M. GRASSL, UNIVERSITY OF SANTA CLARA

A Hasse diagram depicts the order relations in a partially ordered set. In this paper Haase diagrams will indicate the inclusion relations between members of a family of subsets of a given universe $U=\left\{e_{1}, \cdots, e_{n}\right\}$ of n elements. Each subset is represented by a vertex and an upward slanting segment is drawn from the vertex for a subset X to the vertex for a subset Y if X is contained in Y. [1]

In a previous paper the senior author described methods for finding the number $f(n)$ of families $\left\{S_{1}, \cdots, S_{r}\right\}$ with each S_{i} a subset of U and with the inclusion relations among the S_{i} pictured by a given Hasse diagram. The formulas $f(n)$ for all diagrams with $r=2,3$, or 4 were listed. The formulas for $r=5$ have also been obtained and will be published subsequently.

We now single out a zigzag diagram for each $r \geq 2$, i.e., the diagrams

$$
\mathrm{I}, \mathrm{~V}, \mathrm{~N}, \mathrm{~W}, \ldots .
$$

More precisely, we consider the problem of determining the number $a_{r}(n)$ of ordered r-tuples (S_{1}, \cdots, S_{r}) of subsets S_{i} of U such that S_{j} is contained in S_{k} if and only if j is even and $k=j \pm 1$. Our previous results imply the formulas:

$$
\begin{aligned}
\mathrm{a}_{2}(\mathrm{n})= & 3^{\mathrm{n}}-2^{\mathrm{n}} \\
\mathrm{a}_{3}(\mathrm{n})= & 5^{\mathrm{n}}-2 \cdot 4^{\mathrm{n}}+3^{\mathrm{n}} \\
\mathrm{a}_{4}(\mathrm{n})= & 8^{\mathrm{n}}-3 \cdot 7^{\mathrm{n}}+3 \cdot 6^{\mathrm{n}}-5^{\mathrm{n}} \\
\mathrm{a}_{5}(\mathrm{n})= & 13^{\mathrm{n}}-2 \cdot 12^{\mathrm{n}}-11^{\mathrm{n}}+5 \cdot 10^{\mathrm{n}}-4 \cdot 9^{\mathrm{n}}+8^{\mathrm{n}} \\
\mathrm{a}_{6}(\mathrm{n})= & 21^{\mathrm{n}}-20^{\mathrm{n}}-2 \cdot 19^{\mathrm{n}}-18^{\mathrm{n}}+8 \cdot 17^{\mathrm{n}}-4 \cdot 16^{\mathrm{n}}-2 \cdot 15^{\mathrm{n}}-14^{\mathrm{n}} \\
& \quad+3 \cdot 13^{\mathrm{n}}-12^{\mathrm{n}}
\end{aligned}
$$

[^0]Note that the leading term is the $n^{\text {th }}$ power of the $(r+2)$ nd Fibonacci number. The object of this paper is to prove this for general r.

We begin by numbering the 2^{r} basic regions of the Venn diagram for r subsets S_{i} of U. Express a fixed integer k satisfying $0 \leq k \leq 2^{r}$ in binary form, i.e., let $k=c_{1}+2 c_{2}+2^{2} c_{3}+\cdots+2^{r-1} c_{r}$ where each c_{i} is zero or one. For $i=1, \cdots, r$ let W_{i} be S_{i} if $c_{i}=1$ and let W_{i} be the complement of S_{i} in U if $c_{i}=0$. Now let E_{k} be the intersection of W_{1}, \cdots, W_{r}. These E_{k} are the sets represented by the basic regions of the Venn diagram.

We next illustrate the process by finding $a_{3}(n)$. In this case the Hasse diagram is a V and we are concerned with ordered triples ($\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$) such that S_{2} is contained in S_{1} and in S_{3} and there are no other inclusion relations. The condition that S_{2} is contained in S_{1} forces E_{2} and E_{6} tobe empty. The condition that S_{2} is contained in S_{3} forces E_{3} (and E_{2}) to be empty. One then sees that there are no other inclusion relations if and only if both E_{1} and E_{4} are non-empty.

For a given triple $\left(S_{1}, S_{2}, S_{3}\right)$ each of the n objects in the universe is in one and only one of the E_{k}. Excluding the empty E_{2}, E_{3}, and E_{6}, there are 5^{n} ways of distributing the n objects among the 5 remaining basic sets $E_{0}, E_{1}, E_{4}, E_{5}$, and E_{7}. We subtract the 4^{n} ways in which E_{1} turns out to be empty (as well as $\mathrm{E}_{2}, \mathrm{E}_{3}$, and E_{6}) and also subtract the $4^{\mathrm{n}}-3^{\mathrm{n}}$ ways in which E_{4}, but not E_{1}, is empty. The remaining $a_{3}(n)=5^{n}-4^{n}-\left(4^{n}-3^{n}\right)$ ways of distributing the elements of U are all those that meet the conditions associated with the Hasse diagram V.

For a general r the inclusion relations of the zigzag diagram force $g(r)$ of the 2^{r} basic sets E_{k} to be empty. The technique illustrated above canbe used to show that these are the E_{k} such that the r-tuple $\left(c_{1}, \ldots, c_{r}\right)$ of binary coefficients for k has an even-subscripted $c_{i}=1$ with an adjacent $c_{i \pm 1}=0$. The remaining r-tuples will be called allowable; there are $h(r)=$ $2^{r}-g(r)$ such r-tuples. We wish to show that $h(r)$ is the Fibonacci number $\mathrm{F}_{\mathrm{r}+2}$. It will then be clear that the leading term in $\mathrm{a}_{\mathrm{r}}(\mathrm{n})$ is $\left(\mathrm{F}_{\mathrm{r}+2}\right)^{\mathrm{n}}$ and that
the other terms result from subtracting numbers of ways of distributing the elements of U among fewer E_{k} than the allowable ones.

For $r=3$ the allowable triples are

$$
\begin{equation*}
(0,0,0), \quad(1,0,0)_{2} \quad(0,0,1), \quad(1,0,1), \quad(1,1,1), \tag{1}
\end{equation*}
$$

i.e., those for $E_{0}, E_{1}, E_{4}, E_{5}$, and E_{7}. The allowable quadruples for $r=4$ can be made by attaching a zero in the fourth place to the 2 triples in (1) that have a zero in the third place and by attaching either a zero or a one in the fourth place to each of the remaining 3 triples in (1). There are thus 3 allowable quadruples with a one in the fourth place, $2+3=5$ of them with a zero in the fourth place, and a total of $h(4)=8=F_{6}$ such quadruples. Similarly the number of quintuples of our desired form with a zero in the fifth place is 5 , the number with a one is $3+5=8$, and the total number of such quintuples is $h(5)=13=F_{7}$. Using mathematical induction, one now easily shows that $h(r)=F_{r+2}$.

REFERENCES

1. G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium Publications, vol. 25, Rev. Ed., 1961.
2. A. P. Hillman, On the Number of Realizations of a Hasse Diagram by Finite Sets, Proceedings of the Amer. Math. Soc., vol. 6, No. 4, pp. 542-548, 1955.

NOTICE TO ALL SUBSCRIBERS!!!
Please notify the Managing Editor AT ONCE of any address change. The Post Office Department, rather than forwarding magazines mailed third class, sends them directly to the dead-letter office. Unless the addressee specifically requests the Fibonacci Quarterly beforwarded at first class rates to the new address, he will not receive it. (This will usually cost about 30 cents for first class postage.) If possible, please notify us AT LEAST THREE WEEKS PRIOR to publication dates: February 15, April 15, October 15, and December 15.

[^0]: *This work was partially supported by the Undergraduate Research Participation Program of the National Science Foundation through G-21681.

