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1. INTRODUCTION 

The notion of completeness was extended to sequences of integers when 
oo 

Hoggatt and King [1] defined a sequence {Aj}._1 of positive integers a s a 
complete sequence if and only if every natural number N could be represented 
as the sum of a subsequence ,{B,•}.__.. , such that B. = A|. . 

A necessary and sufficient condition for completeness Is stated In the fol-
lowing Lemma, the proof of which is given by H6 L0 Alder [2 ] and J0 L„ Brown9 

J r . [3] . 
Lemma 1.1 Given any non-decreasing sequence of positive integers 

r °° 
{Aj}._ , not necessarily distinct, with A1 = 1, then there exists a sequence 
{ai}-K s where a^ = Oor 1, such that any natural number, Ng can be repre-
sented as the sum of a subsequence {B-j}. . , i„ effl , N = 2 a. A. if and only 

p J~l j=i J 4 
if, Ap+ 1 ^ 1 + S A . , p = 1 ,2 ,3 , - - - . 

The intention of this paper is to extend this past work by investigating 
the number of possible representations of any given natural number N as the 
sum of a subsequence of specific complete sequences, 

2. THE GENERATING FUNCTION 
We denote the number of distinct representations of N, not counting 

permutations of the subsequence {Bj}. _i $ by R(N). The following combin-
J k 

atorial generating function yields R(N) for any given subsequence {A|}. .. , 

A i 
(i) n, (x) = n [i + x 

K i=i 

Now, given any subsequence {Ai}._, the expansion of (1) takes the form, 
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<r 
(2) nk(x) = 2 R(n)xn , 

n=0 

where 

k 
(T = 2 A. . 

1=1 * 

To illustrate this9 consider the subsequence {.2,1,3,4} of the Lucas sequence 
| L n } , where L n = L ^ + \ _ 2 , and L 0 = 2, Lt = 1: 

n^x) = i + x2 

/ q x n2(x) = (1 + x2) (1 + x1) = 1 + x + x2 + x3 

n8(x) = (1 + x2) (1 + x1) (1 + x3) = 1 + x + x2 + 2x3 + x4 + x5 + x6 

n4(x) = 1 + x + x2 + 2x3 + 2x4 + 2x5 + 2x6 + 2x7 + x8 + x9 + xi0 . 

In (3) the coefficient of x is R(n), the number of ways of representing the 
natural number, n , by the summation of a subsequence of these four Lucas 
numbers. 

The expansion of (1) becomes quite tedious as k increases; however, 
we have developed a convenient algorithm for rapidly expanding (1)8 The rep-
resentation of the factors of (1) is the foundation of this algorithm0 The co-
efficients of x in (2) will be tabulated in columns labeled n. The process of 
computing entries in this table is as follows: 

(i) The first factor of (1), namely (1 + x A i ) f i s represented by 
entering 1 in row 1, column 0 and row 1, column A1 of our table. 
The remaining entries in row 1 are zero. 

(ii) The entries in row 2 consist of rewriting row 1 after shifting it A2 

columns to the right. 
(ill) The product (1 + x 1) (1 + x 2) is represented in the third row 

as the sum of row 1 and row 2a 
r i ° ° 

The following example considers the subsequence of {L } given above. The 
n 0 

product 
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(x) - IT .(1 + x ) , for k = 4 
1=1 

and 

{A.} 4 = { 2 ,1 ,3 ,4} is given by, 
1=1 
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1 

The coefficients R(n) of II. (x), k = l 9 2 f 3 s 4 in the above table are exactly 
those given In (3) and the entries In the row labeled IX4(x) are the number o f 
ways of representing the natural numbers 0 to 10 as sums of {2 ,1 , 3 ,4} , not 
counting permutations., 

It is important to note at this point that the representations of the natural 
numbers 4 through 10 will change and the representations of 0 through 3 r e -
main constant in the above table with subsequent partial products. The repre-
sentations which remain Invariant under subsequent partial products will be 
made explicit in Lemma 303 below. 

Prior to investigating representations as sums of specific sequences, It 
is convenient to define the following terms: 

th 
Definition 1,1 Level - The product IL (x) Is defined as the k level In 
the table* 



4 REPRESENTATIONS BY COMPLETE SEQUENCES [Oct. 

Definition 1.2 Length — The number of terms in n, (x) will be denoted 
as the length \ , of the k level. From (1) it is clear that 

k 
X, = 1 + 2 A. 

k i=l x 

Definition 193 R(nsk) denotes the number of representations of n i n 
the k level, 

30 THE COMPLETE FIBONACCI SEQUENCE 

Now that the machinery has been developed for the investigation of com-
plete sequences, we proceed with the study of representations as sums of 
Fibonacci numbers. 

Lemma 3.1 The length \ , is F , + 2 

Proof: 

therefore 

By definition 

k 
X k = X + * A i • i = l 

k 
X k = 1 + ^ F i = F k + 2 

The following lemmas 3,2, 3.3, and 3.4 follow directly from the algorithm for 
expanding EL (x) . 

Lemma 3.2 (Symmetry) 

/ k \ k 
R 2 A. - j , k = R(j,k) for j = 0 , 1 , 2 , 3 , - " , 2 A. . 

Therefore, 

/ k \ k 
Rl 2 F . - j . k j = R ( j , k ) for j = 0 , 1 , 2 , . . - , 2 F. 
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L e m m a 3.2F 

R ( F k + 2 ~ ( j + 1 ) s k ) = R ( J > k ) > i = 0 , 1 , 2 , 3 , • • • , ( F k + 2 - 1) 

L e m m a 3.3 (Invariance) (At < A2 < A3 < • • • < A < ». •) 

R ( j , k ) =• R(J,«o) for j = 0 , 1 , 2 , 3 , . . . , ( A k + 1 - 1) 

F o r the Fibonacci sequence we have, 
L e m m a 3.3F Since (Ft ^ F 2 ^ F 3 ^ ^ F ^ - . . ) 

R ( j , k ) = R(j,co) for j = 0 , 1 , 2 , — , ( F k + 1 - 1) 

i . e . , the f i r s t F, - t e r m s of n (x) a r e a lso the f i r s t F, t e r m s of all 

subsequent pa r t i a l products 

\+m(x) , m = 1 , 2 , 3 , - • • 

L e m m a 3a4 (Additive Proper ty ) 

R ( A k + 1 + j , k + 1) = R ( A k + 1 + j , k ) + R ( j , k ) 

and by symmet r i c p rope r ty , Lemma 3.2, it i s also t rue that 

R ( A k + 1 + j , k + 1) = R ( A k + 1 + j , k ) + R l 2 A. - j , k 

for 

j = 0 , 1 , 2 , 3 , - • • , f 2 A. - A k + 1 

F o r the Fibonacci sequence {F^} this i s : 
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L e m m a 3a4F 

R(F k + ] _ + j , k + 1) = R ( F k + 1 + j f k ) + R ( j , k ) 

and 

R ( F k + ] [ + j g k + i ) = R ( F k + 1 + j f k ) + R ( F k + 2 - (j + l ) , k ) 

for 

j = 0 , l , 2 , 3 , - - « , ( F k - 1) . 

L e m m a 3„5F 

R ( F k + 2 ^ ° ° ) = X + R ( F
k » ° ° ) 

Proof: Using Lemma 304F we have, 

R ( F k + 2 , k + 2) = R ( 0 , k + 1) + R ( F k + 2 , k + 1) . 

But 

R ( 0 , k + 1 ) = R(0,«>) - 1. . 

By the s y m m e t r y proper ty of XL , 1 (x), 

/ k + 1 \ 
R( 2 A. - j , k + 1 = R ( ] 9 k + 1) 

for 

k+1 
j = 0 , 1 , 2 , 3 , - - - , 2 A i . 
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Since 

we let 

k+1 
F k + 3 = 1+ f F i 

which results in 

R ( F k + 2 ^ k + 1 } = R ( F k + l " 1 ? k + 1} ' 

Also by Lemma 3e3Fs 

R ( F k + 1 - l , k + 1) = R ( F k + 1 - l , k ) . 

By symmetry 9 

R ( F k + 1 - 1 , k) = R ( F k , k ) . 

But invariance yields 

R ( F k ? k ) = R ( F k , o o ) . 

Therefore, 

R ( F k + 2 ? - ) = 1 + R(F k > <») . 

The notation R(m) will be used to denote R(m , °° ) in what follows. 

Theorem 1. 

R ( F 2 k > = R ( F 2 k + l > = k + 1 
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Proof: (By induction) When k = 1, we observe that 

R(F2) = R(F3) = R(l) = R(2) = 2 . 

The inductive hypothesis is 

R<F2k> = R ( F 2 k + l ) = k + 1 • 

The inductive transition follows from: 
Lemma 3.5F 

R ( F2k+29 < > 0 ) = X + R ( F 2 k ' ° ° ) = 1 + * + 1) 

and 

R ( F 2k + 3 ' a > > = 1 + R ( F 2 k + l ' ° ° > = l + ( k + D • 

The proof is now complete by mathematical induction. Proofs of the following 

two theorems rely on: 
Lemma 3M6F 

(a) R ( F k + l + F k - 2 » k + 1] = R ( F k - l - X » k ) + R ^ F k - 2 ' k ) 

and 

(b) R ( F
k + l + F k - l » k + X) = R ( F k - 2 " X » k ) + R ( F k - l > k ) 

Proof: Using the additive property of the algorithm as stated in Lem-

ma 3 A , we have 

R ( A k + l + j > k + 1] = R ( A k + l + J » k > + R ( 3 > k ) 

j = 0 , 1 , 2 , . - ( S A . - A ^ j . 
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Let j = Ak_2 for (a) , and j = A ^ for (b) , 

(c) R(A k + 1 + A ^ 2 , k + 1) = R(A k + 1 + A k _ 2 , k) + R ( A ^ 2 , k) 

(d) R ( A
k + 1

 + A
k _ 2 > k + 1] = R(AkKL + Ak-1> k ) + R ( A k - i » k ) 

By symmetry (Lemma 3.2) 

(e) R(A k + 1 + A ^ , k) = R 2 A. - A k + 1 - ^ . k 

W R ( A k + l + Ak~l> k> = Rl ? Ai - Ak+1 - V l - k 
k 
2 

Therefore 

R ( A k + l + A k - 2 ' k + *> = R ( j A i ~ A k + 1 " A k - 2 ' k J + R < A k - 2 ' 

R < A k + l + A k - l ' k + *> = R ( j A i " A k + 1 " A k - l ' k | + R ( A k - l ' 

Specializing the above for the Fibonacci sequence, 

(a) R ( F
k + i + F

k -2» k + 1} = R ( F k ~ l " X> k ) + R ( F k - 2 > k ) » 

(b) R ( F
k + i + Fk-l'k + 1 ) = R ( F k - 2 " 1 » k ) + - R ( F k - l ' . k ) " ' 

Theorem 2 R(2Ffe) = .2R(Fk_2) 

and 

R(2F2 k) = R(2F ) = 2R(F ) = ZRff-.,) = 2k 
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Proof: Using the r e c u r r e n c e re la t ion 

F1 = F -, + F, 0 k k -1 k-2 

and Lemma 306F we have, 

R ( 2 F k ) = R ( F k + 1 + F k _ 2 ) = R ( F k _ 2 ) + R ( F ^ - 1 ) . 

However, by symmet ry and Invar lance 5 

R ( F k ^ - l , k - 2 ) = R ( F k _ 2 f k ; - 2 ) = R ( F k ^ ) 

so that 

R ( 2 F k ) = 2 R ( F ^ 2 ) . 

Applying Theorem 1 to F ? k „ and F ? i -, y ie lds 

R ( 2 F 2 k ) = 2 R ( F 2 k _ 2 ) = 2k 

and 

R ( 2 F 2 k + 1 ) = 2 R ( F 2 k - i ) = 2k . 

Theo rem 30 R (LQ ) = R ( L
2 k ) = 2k - 1, k > 1 

Proof: Since L, < F, n - 1 f •— k k + 2 $ 

R ( L k , o o ) = R ( L k , k + 1) = R ( F k + 1 + F k - 1 , k + 1) 

= R ( F k - 1 , k ) + R ( F ^ 2 - l , k ) ' 

f rom Lemma 3*6F„ 
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By symmetry, Lemma 3.2F? 

R ( F k ~ 2 " l . k - 2) = R ( F
k ^ 1 ? k - 2) . 

But, from Lemma 3.5F, . 

R (F k _ 1 , k - 1) = R (Fk__1 , k - 2 ) + R (0, k - 2) 

and 

R ( F k - 1 , k - 2) = R(Fk__1?k - 1) - 1 

from the above equation. 
By Lemma 383FS 

R ( F k - 1 , - k - 1) = R ( F k _ 1 ? - ) . 

Therefore 

R(L k ) = 2 R ( F k - 1 ) - 1 . 

By Theorem 1, . 

R < F 2k) = R < F 2 k n > = k + 1 

so that 

R ( L 2k- l^ = ^ f c ^ " 1 = 2 k - 1 • 

R(L2 k) = 2R(F2 k_1) - 1 = 2 k - 1 . 

Lemma 3.7F 

(a) R ( F k + 1 - l ) = R ( F k _ l ) + R ( F | - l ) 
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(b) R ( F k + l - r ) = R ( F L l ~ X ) + R ( F k > ' 

Proof of L e m m a 3.7F: 

Since 

F_ = F 2 - F 2 - , then F 2 = F O + F 2 
2n n+1 n - 1 ' n+1 2n n - 1 

which gives 

R ( F ^ + l s 2 n ) = R ( F 2 n + ^ _ l s 2 n ) . 

By addition p rope r ty , L e m m a 3.4F, 

R ( F ^ + 1 ! 2n) = R ( F ^ l f 2n - 1) + R ( F 2 n + 1 - 1 - F ^ + 1 , 2n - 1) 

and by s y m m e t r y , L e m m a 3.2F, and the identity F = F 2 + F 2 , 

R ( F 0 "- 1 - F 2 , 2n - 1)• = R ( F 2 - 1 , 2n - 1 ) . 
v 2n+l n + 1 ' ; v n 9 ' 

There fore 

R (F2 , 2n) = R (F2
 1 , 2n - 1) + R (F2 - 1 . 2n - 1) . 

x n + 1 ' ' n - 1 * • ' x n ' ' 

S imi la r ly , 

R ( F ^ + 1 - 1 , 2n) = R ^ ! - 1 , 2n - 1) + R ( F ^ 9 2n - 1) . 

Since 

F 2 , < F 0 - 1 ; F 2 < F 0 - 1 ; n - 1 2n ' n 2n ' 

and 
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*n+ l 2n+l . . . V 

then by invar iance s L e m m a 3.2F, 

R ( F 2 , 2n) = R ( F 2 ) = R (F2
 1 ) + R ( F 2 - 1 ) v n + 1 s , . n+1 7 \ n - 1 ' . ..,A n ; 

and 

R ( F ^ + 1 - 1 , 2n) = R ( F ^ + 1 - 1) = R ( F ^ 1 - 1) + 

(a) 

(b) 

(c) 

(d) 

Theo rem 4 , 

R < F 2 k - l " *> = F 2 k 

R ( F 2 k - 2 ) = F 2 k - 1 

•• , R ( F 2 k - ^ = L 2 k - 1 

R ( F2k-l ) = L 2 k - 2 

Proof: (By induction) 

F 0 = 0 ; R(Fjj) = R ( F | - 1) = R ( F | . - 1) = 1 

and 

R(FJ) = 2 

(a) R ( F ^ ) = R (F ^ _ 2 ) H - ' R t F ^ - 1) 

(b) R(F« ,-".!)• = R(F2 - 1) + R(F^_ 1 ) 
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by Lemma 3.7F8 

Replacing k by 2k in Lemma 3.7F (a), yields 

B(F»2k) = R ( F | k _ 2 ) + B ( F | k _ 1 - l ) . 

Thus 

R ( F 2 k ) ~~ F2k~-1 + F 2k F2k+1 

Replacing k by 2k + 1 in Lemma 3.7F (b), yields 

R ( F | f c f l - 1) = R ( F | k _ 1 - l) + R ( F | k ) 

Therefore 

Similarly, 

F + F 
* 2k x2k+l 

R ( F 2 k + l " *> = F2k+2 

R ( F | k + 1 ) = R ( F | k „ l ) + R ( F | k ™ 1) 

R<F2kfl> = L 2 k » 2 + L 2 k ^ l = L2k 

and 

R < F 2 ^ 2 - 1 > = R ( F 2 k " 1 ) + R ( F 2 k + l ) 

R (F2k+2 " 1 } = L2k»l + L2k = L2k+1 • 

Many more fascinating properties of complete sequences will follow in Par t II 
of this paper. 

References may be found on page 31. 


