Theorem 2. For all sequences formed by sums of terms on parallel diagonals of the generalized Pascal's triangle, and for all sequences defined by (9) given $r+1$ initial terms,

$$
\lim _{n \rightarrow \infty} \frac{u_{n+s}}{u_{n}}
$$

exists and is the greatest root in absolute value of

$$
x^{\frac{r+1}{s}}-a x^{\frac{r}{s}}-b=0
$$

provided this absolute value is not shared by two distinct roots.

REFERENCES

1. W. S. Burnside and A. W. Panton, Introduction to the Theory of Binary Algebraic Forms, Dublin University Press, 1918, p. 197.
2. L. E. Dickson, History of the Theory of Numbers, Washington, D. C., Carnegie Institute, 1919-1923.
3. B. W. Jones, The Theory of Numbers, Rinehart and Company, 1955, pp. 77-99.
$\triangle \operatorname{Rec}$
REFERENCES
(Cont. from p. 14)
4. V. E. Hoggatt and C. King, Prob. E1424, American Mathematical Monthly, Vol. 66, 1959, pp. 129-130.
5. H. L. Alder, "The Number System in More General Scales," Mathematical Magazine, June 1962, pp. 147-148.
6. J. L. Brown, Jr., "Note on Complete Sequences of Integers," American Mathematical Monthly, Vol. 68, 1961, pp. 557-560.

