TRIANGLE INSCRIBED IN RECTANGLE

J. A. H. HUNTER

Arising from a problem proposed recently by Ben Cohen in a letter to myself, yet another example of the famous Golden Section has been revealed. The problem was:

Within a given rectangle, inscribe a triangle such that the remainder of the rectangle will comprise three triangles of equal area.

Referring to the figure above, we have:

$$
\mathrm{xw}=\mathrm{yz}, \text { and } \mathrm{x}=\mathrm{yw} /(\mathrm{w}+\mathrm{z})
$$

whence

$$
z^{2}+z w-w^{2}=0, \text { so } 2 z=w(\sqrt{5}-1)
$$

Then,

$$
2 \mathrm{x}=\mathrm{y}(\sqrt{5}-1)
$$

So, as a necessary condition to meet the requirements, we have:

$$
\frac{y}{x}=\frac{w}{z}=\frac{2}{\sqrt{5}-1}=\frac{\sqrt{5}+1}{2}
$$

the Golden Section.

