## ON THE GREATEST PRIMITIVE DIVISORS OF FIBONACCI AND LUCAS NUMBERS WITH PRIME-POWEK SUBSCRIPTS DOV JARDEN, JERUSALEM, ISRAEL

The greatest primitive divisor $F_{n}^{\prime}$ of a Fibonacci number $F_{n}$ is defined as the greatest divisor of $\mathrm{F}_{\mathrm{n}}$ relatively prime to every $\mathrm{F}_{\mathrm{x}}$ with positive $\mathrm{x}<\mathrm{n}$.

Similarly, the greatest primitive divisor $L_{n}^{\prime}$ of a Lucas number $L_{n}$ is defined as the greatest divisor of $L_{n}$ relatively prime to every $L_{x}$ with nonnegative $\mathrm{x}<\mathrm{n}$.

The first 20 values of the sequence $\left(F_{n}^{\prime}\right)$ are:

$$
\begin{aligned}
& F_{1}^{\prime}=1, F_{2}^{\prime}=1, F_{3}^{\prime}=2, F_{4}^{\prime}=3, F_{5}^{\prime}=5, F_{6}^{\prime}=1, F_{7}^{\prime}=13, \\
& F_{8}^{\prime}=7, F_{9}^{\prime}=17, F_{10}^{\prime}=11, F_{11}^{\prime}=89, F_{12}^{\prime}=1, F_{13}^{\prime}=233, F_{14}^{\prime}=29, \\
& F_{15}^{\prime}=61, F_{16}^{\prime}=47, F_{17}^{\prime}=1597, F_{18}^{\prime}=19, F_{19}^{\prime}=4181, F_{20}^{\prime}=41 .
\end{aligned}
$$

As may be seen from these few examples, the growth of the sequence $\left(F_{n}^{\prime}\right)$ is very irregular. However, some special subsequences of $\left(F_{n}^{\prime}\right)$ may occur to be increasing sequences. E.g., the subsequence ( $F_{p}^{\prime}$ ), where $p$ ranges over all the primes, is a strictly increasing sequence (since $F_{p}^{\prime}=F_{p}$ and ( $\mathrm{F}_{\mathrm{n}}$ ) is a strictly increasing sequence beginning with $\mathrm{n}=2$ ).

Similarly, the subsequence $\left(L_{q}^{\prime}\right)$, where $q$ ranges over all the odd primes and over all the powers of 2 beginning with $2^{2}$, is a strictly increasing sequence.

The main object of this note is to prove the following inequalities:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{p}^{\mathrm{X}+1}}^{\prime}>\mathrm{F}_{\mathrm{p}^{\mathrm{x}}}^{\prime}(\mathrm{p}-\mathrm{a} \text { prime, } \mathrm{x}-\mathrm{a} \text { positive integer }) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
F_{2 p^{x+1}}^{\prime}>F_{2 p^{x}}^{\prime} \quad(p-a \text { prime, } x-a \text { nonnegative integer }) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
L_{p^{x+1}}^{\prime}>L_{p^{x}}^{\prime} \quad(p-a \text { prime, } x-a \text { nonnegative integer }) \tag{*}
\end{equation*}
$$

In other words: the subsequences $\left(F_{p x}^{\prime}\right)$ and $\left(F_{2 p^{x}}^{\prime}\right)$ of the sequence ( $F_{n}^{\prime}$ ), as well as the subsequence ( $L_{p^{x}}^{\prime}$ ) of the sequence ( $L_{n}^{\prime}$ ), p being a prime and $x=1,2,3, \cdots$, are strictly increasing sequences.

Since (as is well known) the primitive divisors of $F_{2 n}$ and $L_{n}(n \geq 1)$ coincide, we have: $F_{2 n}^{\prime}=L_{n}^{\prime}(n \geq 1)$, and especially: $F_{2^{x+1}}^{\prime}=L_{2^{x}}^{\prime}(x \geq 0)$. Hence, (2) and (2*) are equivalent, and, for $\mathrm{p}=2$, also (1) and ( $2^{*}$ ). Thus it is sufficient to prove (1) for $p \geq 2$ and ( $2^{*}$ ) for $p \neq 2$ 。

We shall even show the stronger inequalities:

$$
\begin{align*}
& F_{p^{x+1}}^{\prime}>F_{p^{x}}(p-a \text { prime, } x-\text { a positive integer })  \tag{3}\\
& L_{p^{x}+1}^{\prime}>L_{p^{x}}(p-a \text { prime }, x-a \text { nonnegative integer })
\end{align*}
$$

Since $F_{n} \geq F_{n}^{\prime}, L_{n} \geq L_{n}^{\prime}$, it is obvious that in order to prove (1) for $p \geq 2$, and $\left(2^{*}\right)$ for $p \neq 2$, it is sufficient to prove (3) for $p \geq 2$ and ( $3^{*}$ ) for $p \neq 2$ 。

The main tools for proving (3) for $\mathrm{p} \geq 2$ and ( $3^{*}$ ) for $\mathrm{p} \neq 2$, are the following inequalities:

$$
\begin{align*}
& F_{n^{x+1}}>F_{n^{x}}^{2}(n \geq 2, x \geq 1)  \tag{4}\\
& F_{5^{x+1}}>5 F_{5^{x}}^{2}(x \geq 1)  \tag{5}\\
& L_{n^{x+1}}>L_{n^{x}}^{2} \quad(n \geq 2, x \geq 0) \tag{*}
\end{align*}
$$

In order to prove (3) for $\mathrm{p} \geq 2$ and ( $3^{*}$ ) for $\mathrm{p} \neq 2$, it is sufficient (as will be shown later) to prove (4) for n a prime $\geq 2$ and (4*) for n an odd prime. However, since (4) and (4*) are interesting by themselves, we shall prove them for any positive integer $\mathrm{n} \geq 2$.

The following formulae are well known.
(6) $\quad \mathrm{F}_{\mathrm{n}}=\frac{1}{\sqrt{5}}\left(\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}\right)$

$$
\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}
$$

$\left(6^{*}\right)$

$$
\mathrm{L}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}
$$

Since

$$
\alpha=\frac{1+\sqrt{5}}{2} \quad \frac{1+\sqrt{4}}{2}=\frac{3}{2},
$$

we have:
(7)

$$
\alpha=\frac{3}{2}
$$

Since

$$
\begin{aligned}
& \beta=\frac{1-\sqrt{5}}{2}>\frac{1-\sqrt{9}}{2}=-1 \\
& \beta=\frac{1-\sqrt{5}}{2}<\frac{1-\sqrt{4}}{2}-\frac{1}{2}
\end{aligned}
$$

we have

$$
\begin{equation*}
-1<\beta<-\frac{1}{2},|\beta|<1 . \tag{8}
\end{equation*}
$$

Since

$$
\alpha \beta=\frac{1+\sqrt{5}}{2} \cdot \frac{1-\sqrt{5}}{2}=-1,
$$

we have:
(9)

$$
\alpha \beta=-1
$$

For any positive integer $n \geq 3$ we have, by (7):

$$
\begin{align*}
& \alpha^{\mathrm{n}^{\mathrm{X}+1}}=\left(\alpha^{\mathrm{n}^{\mathrm{X}}}\right)^{\mathrm{n}} \geq\left(\alpha^{\mathrm{n}^{\mathrm{x}}}\right)^{3}=\alpha^{\mathrm{n}^{\mathrm{x}}} \alpha^{2 \mathrm{n}^{\mathrm{x}}}>\left(\frac{3}{2}\right)^{2} \alpha^{2 \mathrm{n}^{\mathrm{X}}}>2 \alpha^{2 \mathrm{n}^{\mathrm{X}}}= \\
& \alpha^{2 \mathrm{n}^{\mathrm{x}}}+\alpha^{2 \mathrm{n}^{\mathrm{x}}}>\alpha^{2 \mathrm{n}^{\mathrm{x}}}+\left(\frac{3}{2}\right)^{2}>\alpha^{2 \mathrm{n}^{\mathrm{x}}}+3, \quad \text { whence, } \\
& \alpha^{\mathrm{n}^{\mathrm{x}+1}}>\alpha^{2 \mathrm{n}^{\mathrm{X}}}+3 \quad(\mathrm{n} \geq 3) . \tag{10}
\end{align*}
$$

[Oct.
For odd $\mathrm{n} \geq 3$ we have, by (10), (8), (9):
$\alpha^{\mathrm{n}^{\mathrm{X}+1}}-\beta^{\mathrm{n}^{\mathrm{X}+1}}>\alpha^{2 \mathrm{n}^{\mathrm{X}}}+3=\alpha^{2 \mathrm{n}^{\mathrm{X}}}+2+1>\alpha^{2 \mathrm{n}^{\mathrm{X}}}+2+\beta^{2 \mathrm{n}^{\mathrm{X}}}=\left(\alpha^{\mathrm{nx}}-\beta^{\mathrm{nx}}\right)^{2}$, whence

$$
\begin{equation*}
\alpha^{\mathrm{n}^{\mathrm{X}+1}}-\beta^{\mathrm{n}^{\mathrm{X}+1}}>\left(\alpha^{\mathrm{n}^{\mathrm{X}}}-\beta \mathrm{n}^{\mathrm{x}}\right)^{2}(2 \not X \mathrm{n}, \mathrm{n} \geq 3) . \tag{11}
\end{equation*}
$$

For even $n \geq 3$ we have, by (10), (8), (9):

$$
\begin{aligned}
& \alpha^{\mathrm{n}^{\mathrm{x}+1}}-\beta^{\mathrm{n}^{\mathrm{x}+1}}>\alpha^{2 \mathrm{n}^{\mathrm{x}}}+3-\beta^{\mathrm{n}^{\mathrm{x}+1}}=\alpha^{2 \mathrm{n}^{\mathrm{x}}}-2+\left(5-\beta^{\mathrm{nx}+1}\right. \\
&>\alpha^{2 \mathrm{n}^{\mathrm{x}}}-2+\beta^{2 \mathrm{n}^{\mathrm{x}}}=\left(\alpha^{\mathrm{n}^{\mathrm{x}}}-\beta^{\mathrm{n}^{\mathrm{x}}}\right)^{2} \quad, \text { whence } \\
& \alpha^{\mathrm{n}^{\mathrm{x}+1}}-\beta^{\mathrm{n}^{\mathrm{x}+1}}>\left(\alpha^{\mathrm{n}^{\mathrm{x}}}-\beta^{\mathrm{n}^{\mathrm{x}}}\right)^{2}(2 \mid \mathrm{n}, \mathrm{n} \geq 3)
\end{aligned}
$$

$\overline{\overline{11}})$

Combining ( $\overline{11}$ ) and $(\overline{\overline{11}})$ we have:

$$
\begin{equation*}
\alpha^{\mathrm{n}^{\mathrm{X}+1}}-\beta^{\mathrm{n}^{\mathrm{X}+1}}>\left(\alpha^{\mathrm{n}^{\mathrm{X}}}-\beta^{\mathrm{n}^{\mathrm{X}}}\right)^{2}(\mathrm{n} \geq 3) \tag{11}
\end{equation*}
$$

For $\mathrm{n} \geq 3$ we have, by (6), (11):

$$
\begin{gathered}
\mathrm{F}_{\mathrm{n}^{\mathrm{x}+1}}= \\
=\frac{1}{\sqrt{5}}\left(\alpha^{\mathrm{n}^{\mathrm{X}+1}}-\beta^{\mathrm{n}^{\mathrm{X}+1}}\right)>\frac{1}{\sqrt{5}}\left(\alpha^{\mathrm{n}^{\mathrm{X}}}-\beta^{\left.\mathrm{n}^{\mathrm{x}}\right)^{2}>\left(\frac{1}{\sqrt{5}}\right)^{2}\left(\alpha^{\mathrm{n}^{\mathrm{x}}}-\beta^{\mathrm{n}^{\mathrm{x}}}\right)^{2}} \begin{array}{c}
\left\{\frac{1}{\sqrt{5}}\left(\alpha^{\mathrm{n}^{\mathrm{X}}}-\beta^{\mathrm{n}^{\mathrm{x}}}\right)\right\}^{2}=\mathrm{F}_{\mathrm{n}^{\mathrm{x}}}^{2}, \quad \text { whence, } \\
\mathrm{F}_{\mathrm{n}^{\mathrm{X}+1}}>\mathrm{F}_{\mathrm{n}^{\mathrm{x}}}^{2} \quad(\mathrm{n} \geq 3) .
\end{array} .\right.
\end{gathered}
$$

( $\overline{4}$ )

We have, by (6), (9):

$$
\begin{aligned}
\mathrm{F}_{2^{\mathrm{X}+1}}= & \frac{1}{\sqrt{5}}\left(\alpha^{2^{\mathrm{X}+1}}-\beta^{2^{\mathrm{X}+1}}\right)>\frac{1}{5}\left(\alpha^{2^{\mathrm{x}+1}}-2+\beta^{2^{\mathrm{X}+1}}\right)= \\
& \left\{\frac{1}{\sqrt{5}}\left(\alpha^{2^{\mathrm{X}}}-\beta^{2^{\mathrm{x}}}\right)\right\}^{2}=\mathrm{F}_{2^{\mathrm{X}}}^{2}, \quad \text { whence }
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{F}_{2^{\mathrm{X}+1}}>\mathrm{F}_{2^{\mathrm{X}}}^{2} \tag{4}
\end{equation*}
$$

Combining ( $\overline{4}$ ) and ( $\overline{4}$ ) we have (4).
We have, by (7):*

$$
\begin{gather*}
\alpha^{5^{\mathrm{X}+1}}=\left(\alpha^{5^{\mathrm{X}}}\right)^{5}=\left(\alpha^{5^{\mathrm{X}}}\right)^{3}\left(\alpha^{5^{\mathrm{X}}}\right)^{2}>\left(\frac{3}{2}\right)^{5} \alpha^{2.5^{\mathrm{X}}}=\frac{243}{32} \alpha^{2.5^{\mathrm{X}}}>7 \alpha^{2.5^{\mathrm{X}}}= \\
5 \alpha^{2.5^{\mathrm{X}}}+2 \alpha^{2.5^{\mathrm{X}}}>5 \alpha^{2.5^{\mathrm{X}}}+2\left(\frac{3}{2}\right)^{6}>5 \alpha^{2.5^{\mathrm{X}}}+22 \text {, whence } \\
\alpha^{5^{\mathrm{X}+1}}>5 \alpha^{2.5^{\mathrm{X}}}+22 \tag{12}
\end{gather*}
$$

We have, by (12), (8), (9):

$$
\begin{gathered}
\alpha^{5^{\mathrm{X}+1}}-\beta^{5^{\mathrm{X}+1}}>5 \alpha^{2.5^{\mathrm{X}}}+22-\beta^{5^{\mathrm{X}+1}}>5 \alpha^{2.5^{\mathrm{X}}}+10+\left(12-\beta^{5^{\mathrm{X}+1}}\right) \\
\quad>5 \alpha^{2.5^{\mathrm{X}}}+10+5 \beta^{2.5^{\mathrm{X}}}=5\left(\alpha^{2.5^{\mathrm{X}}}+2+\beta^{2.5^{\mathrm{X}}}\right)=5\left(\alpha^{5^{\mathrm{X}}}-\beta^{5^{\mathrm{X}}}\right)^{2}
\end{gathered}
$$

whence

$$
\begin{equation*}
\alpha^{5^{\mathrm{x}+1}}-\beta^{5^{\mathrm{x}+1}}>5\left(\alpha^{5^{\mathrm{x}}}-\beta^{5^{\mathrm{x}}}\right)^{2} . \tag{13}
\end{equation*}
$$

We have by (6), (13), (8):

$$
\begin{aligned}
\mathrm{F}_{5^{\mathrm{X}+1}} & =\frac{1}{\sqrt{5}}\left(\alpha^{5^{\mathrm{x}+1}}-\beta^{5^{\mathrm{X}+1}}\right)>\frac{1}{\sqrt{5}} 5\left(\alpha^{5^{\mathrm{x}}}-\beta^{5^{\mathrm{x}}}\right)^{2}>5\left\{\frac{1}{\sqrt{5}}\left(\alpha^{5^{\mathrm{x}}}-\beta^{5^{\mathrm{x}}}\right)\right\}^{2} \\
& =5 \mathrm{~F}_{5^{\mathrm{X}}}^{2},
\end{aligned}
$$

whence (5) is valid.
For odd $\mathrm{n} \geq 3$ we have, by $\left(6^{*}\right)$, (10), (8), (9):
$\mathrm{L}_{\mathrm{n}^{\mathrm{X}+1}}=\alpha^{\mathrm{n}^{\mathrm{X}+1}}+\beta^{\mathrm{n}} \mathrm{X}+1>\alpha^{2 \mathrm{n}^{\mathrm{X}}}+3+\beta^{\mathrm{n}^{\mathrm{X}+1}}=\alpha^{2 \mathrm{n}^{\mathrm{X}}}-2+\left(5+\beta^{\mathrm{n}^{\mathrm{X}+1}}\right)=$ $\alpha^{2 n^{\mathrm{X}}}-2+\beta^{2 \mathrm{n}^{\mathrm{X}}}=\left(\alpha^{\mathrm{n}^{\mathrm{X}}}+\beta^{\mathrm{n}^{\mathrm{x}}}\right)^{2}=\mathrm{L}_{\mathrm{n}^{\mathrm{X}}}^{2}$,
whence
*See editorial remark, page 59。

$$
\begin{equation*}
\mathrm{L}_{\mathrm{n}^{\mathrm{x}+1}}>\mathrm{L}_{\mathrm{n}^{\mathrm{x}}}^{2}(2 \nmid \mathrm{n}, \quad \mathrm{n} \geq 3) \tag{4}
\end{equation*}
$$

For even $\mathrm{n} \geq 3$ we have, by $\left(6^{*}\right)$, (10), (8), (9):
$\mathrm{L}_{\mathrm{n}^{\mathrm{x}+1}}=\alpha^{\mathrm{nx}+1}+\beta^{\mathrm{n}^{\mathrm{x}+1}}>\alpha^{2 \mathrm{n}^{\mathrm{x}}}+3=\alpha^{2 \mathrm{n}^{\mathrm{X}}}+2+1>\alpha^{2 \mathrm{n}^{\mathrm{x}}}+2+\beta^{2 \mathrm{n}^{\mathrm{X}}}=$ $\left(\alpha^{n^{x}}+\beta^{n^{\mathrm{X}}}\right)^{2}=L_{n \mathrm{x}}^{2} \quad, \quad$ whence

$$
\begin{equation*}
\mathrm{L}_{\mathrm{n}^{\mathrm{x}+1}}>\mathrm{L}_{\mathrm{n}^{\mathrm{x}}}(2 \mid \mathrm{n}, \quad \mathrm{n} \geq 3) \tag{4}
\end{equation*}
$$

For $n=2$ we have the well-known relation: $L_{2^{x}+1}=L_{2^{x}}^{2}-2$, whence $\left(\overline{\left.\overline{4^{*}}\right)}\right.$

$$
\mathrm{L}_{2^{\mathrm{X}+1}}<\mathrm{L}_{2^{\mathrm{x}}}^{2}
$$

Combining $\left(\overline{4}^{*}\right),\left(\overline{4}^{*}\right)$ and $\left(\overline{\overline{4}}{ }^{*}\right)$ we have $\left(4^{*}\right)$.
Proof of (3), (3*).
For $p \neq 5,\left(p, F_{p^{x}}\right)=1$. Hence, by the law of repetition of primes in ( $\mathrm{F}_{\mathrm{n}}$ ), the greatest imprimitive divisor of $\mathrm{F}_{\mathrm{p}^{\mathrm{x}+1}}$ is $\mathrm{F}_{\mathrm{p}^{\mathrm{x}}}$, whence, by (4):

$$
\mathrm{F}_{\mathrm{p}^{\mathrm{x}+1}}^{\prime}=\mathrm{F}_{\mathrm{p}^{\mathrm{x}+1}} / \mathrm{F}_{\mathrm{p}^{\mathrm{X}}}>\mathrm{F}_{\mathrm{p}^{\mathrm{X}}}
$$

i. e., (3) is valid for $p \neq 5$.

For $p=5$, by the law of repetition of primes in $\left(F_{n}\right)$, the greatest imprimitive divisor of $\mathrm{F}_{5 \mathrm{X}+1}$ is $5 \mathrm{~F}_{5 \mathrm{X}}$, whence, by (5):

$$
\mathrm{F}_{5}^{\mathrm{X}+1}=\mathrm{F}_{5^{\mathrm{X}}+1} / 5 \mathrm{~F}_{5^{\mathrm{X}}}>\mathrm{F}_{5^{\mathrm{X}}},
$$

i. e., $\quad F_{5}^{\prime} \mathrm{X}+1>\mathrm{F}_{5 \mathrm{X}}$, i. e., (3) is valid for $\mathrm{p}=5$.

For $p \neq 2$, by the law of repetition of primes in $\left(L_{n}\right)$, the greatest imprimitive divisor of $L_{p^{x+1}}$ is $L_{p^{x}}$, whence, by (4*): $L_{p^{x}+1}^{1}=L_{p^{x}+1} / L_{p^{x}}$ $>L_{p^{x}}$, i.e., $\left(3^{*}\right)$ is valid for $p \neq 2$.


