ON THE GREATEST PRIMITIVE DIVISORS OF FIBONACCI AND LUCAS NUMBERS WITH PRIME-POWER SUBSCRIPTS DOV JARDEN, JERUSALEM, ISRAEL

The greatest primitive divisor F'_n of a Fibonacci number F_n is defined as the greatest divisor of F_n relatively prime to every F_x with positive x < n.

Similarly, the greatest primitive divisor L_n' of a Lucas number L_n is defined as the greatest divisor of L_n relatively prime to every L_x with non-negative x < n.

The first 20 values of the sequence (F'_n) are:

As may be seen from these few examples, the growth of the sequence (F'_n) is very irregular. However, some special subsequences of (F'_n) may occur to be increasing sequences. E.g., the subsequence (F'_p) , where p ranges over all the primes, is a strictly increasing sequence (since $F'_p = F_p$ and (F_p) is a strictly increasing sequence beginning with n = 2).

Similarly, the subsequence (L_q^t) , where q ranges over all the odd primes and over all the powers of 2 beginning with 2^2 , is a strictly increasing sequence.

The main object of this note is to prove the following inequalities:

(1)
$$F'_{p}x+1 > F'_{p}x$$
 (p - a prime, x - a positive integer)

(2) $F'_{2p^{X+1}} > F'_{2p^X}$ (p - a prime, x - a nonnegative integer)

15

16 ON THE GREATEST PRIMITIVE DIVISORS OF FIBONACCI [Oct.

$$L_{x+1}^{*} > L_{x}^{*} (p-a \text{ prime, } x-a \text{ nonnegative integer})$$

In other words: the subsequences (F'_{px}) and (F'_{2px}) of the sequence (F'_{n}) , as well as the subsequence (L'_{px}) of the sequence (L'_{n}) , p being a prime and $x = 1, 2, 3, \cdots$, are strictly increasing sequences.

Since (as is well known) the primitive divisors of F_{2n} and L_n $(n \ge 1)$ coincide, we have: $F'_{2n} = L'_n$ $(n \ge 1)$, and especially: $F'_{2x+1} = L'_{2x}$ $(x \ge 0)$. Hence, (2) and (2*) are equivalent, and, for p = 2, also (1) and (2*). Thus it is sufficient to prove (1) for $p \ge 2$ and (2*) for $p \ne 2$.

We shall even show the stronger inequalities:

(3)
$$F'_{p^{x+1}} > F_{p^{x}}$$
 (p - a prime, x - a positive integer)

(3*)

 $L'_{p^{x+1}} > L_{p^x}$ (p - a prime, x - a nonnegative integer)

Since $F_n \ge F'_n$, $L_n \ge L'_n$, it is obvious that in order to prove (1) for $p \ge 2$, and (2*) for $p \ne 2$, it is sufficient to prove (3) for $p \ge 2$ and (3*) for $p \ne 2$.

The main tools for proving (3) for $p \ge 2$ and (3^{*}) for $p \ne 2$, are the following inequalities:

(4)
$$F_{n^{X+1}} > F_{n^{X}}^{2}$$
 $(n \ge 2, x \ge 1)$

(5) $F_{5x+1} > 5F_{5x}^{2}$ (x \geq 1)

(4*) $L_{n^{X+1}} > L_{n^{X}}^{2}$ (n ≥ 2 , x ≥ 0)

In order to prove (3) for $p \ge 2$ and (3^{*}) for $p \ne 2$, it is sufficient (as will be shown later) to prove (4) for n a prime ≥ 2 and (4^{*}) for n an odd prime. However, since (4) and (4^{*}) are interesting by themselves, we shall prove them for any positive integer $n \ge 2$.

1963] AND LUCAS NUMBERS WITH PRIME-POWER SUBSCRIPTS

The following formulae are well known.

(6)
$$F_{n} = \frac{1}{\sqrt{5}} (\alpha^{n} - \beta^{n})$$

$$\alpha = \frac{1 + \sqrt{5}}{2}, \quad \beta = \frac{1 - \sqrt{5}}{2}$$
(6*)
$$L_{n} = \alpha^{n} + \beta^{n}$$

Since

$$\alpha = \frac{1 + \sqrt{5}}{2} - \frac{1 + \sqrt{4}}{2} = \frac{3}{2}$$
,

we have:

(7)
$$\alpha = \frac{3}{2} \quad .$$

Since

$$\beta = \frac{1 - \sqrt{5}}{2} > \frac{1 - \sqrt{9}}{2} = -1 ,$$

$$\beta = \frac{1 - \sqrt{5}}{2} < \frac{1 - \sqrt{4}}{2} - \frac{1}{2} ,$$

we have

(8)
$$-1 < \beta < -\frac{1}{2}$$
, $|\beta| < 1$.

Since

$$\alpha\beta = \frac{1+\sqrt{5}}{2} \cdot \frac{1-\sqrt{5}}{2} = -1$$
 ,

we have:

(9)
$$\alpha\beta = -1$$

For any positive integer $n \ge 3$ we have, by (7):

$$\alpha^{n^{X+1}} = (\alpha^{n^X})^n \ge (\alpha^{n^X})^3 = \alpha^{n^X} \alpha^{2n^X} > \left(\frac{3}{2}\right)^2 \alpha^{2n^X} > 2\alpha^{2n^X} = \alpha^{2n^X} + \alpha^{2n^X} > \alpha^{2n^X} + \left(\frac{3}{2}\right)^2 > \alpha^{2n^X} + 3 , \quad \text{whence,}$$

(10)
$$\alpha^{n^{X+1}} > \alpha^{2n^{X}} + 3 \quad (n \ge 3)$$
.

17

18ON THE GREATEST PRIMITIVE DIVISORS OF FIBONACCI [Oct.

For odd $n \ge 3$ we have, by (10), (8), (9):

 $\alpha^{n^{X+1}} - \beta^{n^{X+1}} > \alpha^{2n^{X}} + 3 = \alpha^{2n^{X}} + 2 + 1 > \alpha^{2n^{X}} + 2 + \beta^{2n^{X}} = (\alpha^{n^{X}} - \beta^{n^{X}})^{2}, \text{whence}$ (]

$$11) \qquad \alpha^{n^{X+1}} - \beta^{n^{X+1}} > (\alpha^{n^X} - \beta^{n^X})^2 (2 \not | n, n \ge 3) .$$

For even $n \ge 3$ we have, by (10), (8), (9):

$$\begin{array}{rcl} \alpha^{n^{X+1}} &- \beta^{n^{X+1}} &> \alpha^{2n^{X}} + 3 &- \beta^{n^{X+1}} &= \alpha^{2n^{X}} - 2 &+ (5 &- \beta^{n^{X+1}}) \\ &> \alpha^{2n^{X}} - 2 &+ \beta^{2n^{X}} &= (\alpha^{n^{X}} - \beta^{n^{X}})^{2} &, & \text{whence} \end{array}$$

$$(\overline{11}) \qquad \qquad \alpha^{n^{X+1}} - \beta^{n^{X+1}} > (\alpha^{n^X} - \beta^{n^X})^2 (2 \mid n, n \geq 3)$$

Combining $(\overline{11})$ and $(\overline{\overline{11}})$ we have:

(11)
$$\alpha^{n^{X+1}} - \beta^{n^{X+1}} > (\alpha^{n^X} - \beta^{n^X})^2 (n \ge 3)$$

For $n \ge 3$ we have, by (6), (11):

$$\begin{split} \mathbf{F}_{n^{X+1}} &= \frac{1}{\sqrt{5}} \left(\alpha^{n^{X+1}} - \beta^{n^{X+1}} \right) > \frac{1}{\sqrt{5}} \left(\alpha^{n^{X}} - \beta^{n^{X}} \right)^{2} > \left(\frac{1}{\sqrt{5}} \right)^{2} \left(\alpha^{n^{X}} - \beta^{n^{X}} \right)^{2} \\ &= \left\{ \frac{1}{\sqrt{5}} \left(\alpha^{n^{X}} - \beta^{n^{X}} \right) \right\}^{2} = \mathbf{F}_{n^{X}}^{2} , \quad \text{whence,} \end{split}$$

(4)

$$F_{n^{X+1}} > F_{n^{X}}^2$$
 (n \ge 3).

We have, by (6), (9):

$$\mathbf{F}_{2^{X+1}} = \frac{1}{\sqrt{5}} \left(\alpha^{2^{X+1}} - \beta^{2^{X+1}} \right) > \frac{1}{5} \left(\alpha^{2^{X+1}} - 2 + \beta^{2^{X+1}} \right) = \\ \left\{ \frac{1}{\sqrt{5}} \left(\alpha^{2^{X}} - \beta^{2^{X}} \right) \right\}^2 = \mathbf{F}_{2^{X}}^2 , \quad \text{whence}$$

$$F_{2^{X+1}} > F_{2^{X}}^{2}$$
 .

Combining $(\overline{4})$ and $(\overline{\overline{4}})$ we have (4). We have, by (7):*

$$\begin{split} \alpha^{5^{X+1}} &= (\alpha^{5^{X}})^{5} = (\alpha^{5^{X}})^{3} (\alpha^{5^{X}})^{2} > \left(\frac{3}{2}\right)^{5} \alpha^{2 \cdot 5^{X}} = \frac{243}{32} \alpha^{2 \cdot 5^{X}} > 7 \alpha^{2 \cdot 5^{X}} = \\ &5 \alpha^{2 \cdot 5^{X}} + 2 \alpha^{2 \cdot 5^{X}} > 5 \alpha^{2 \cdot 5^{X}} + 2 \left(\frac{3}{2}\right)^{6} > 5 \alpha^{2 \cdot 5^{X}} + 22, \quad \text{whence} \\ &\alpha^{5^{X+1}} > 5 \alpha^{2 \cdot 5^{X}} + 22 \quad . \end{split}$$

(12)

 $(\overline{\overline{4}})$

$$\begin{aligned} \alpha^{5^{X+1}} &- \beta^{5^{X+1}} > 5\alpha^{2.5^{X}} + 22 - \beta^{5^{X+1}} > 5\alpha^{2.5^{X}} + 10 + (12 - \beta^{5^{X+1}}) \\ &> 5\alpha^{2.5^{X}} + 10 + 5\beta^{2.5^{X}} = 5(\alpha^{2.5^{X}} + 2 + \beta^{2.5^{X}}) = 5(\alpha^{5^{X}} - \beta^{5^{X}})^{2}, \end{aligned}$$

whence

(13)
$$\alpha^{5^{X+1}} - \beta^{5^{X+1}} > 5(\alpha^{5^X} - \beta^{5^X})^2 .$$

We have by (6), (13), (8):

$$\mathbf{F}_{5^{X+1}} = \frac{1}{\sqrt{5}} \left(\alpha^{5^{X+1}} - \beta^{5^{X+1}} \right) > \frac{1}{\sqrt{5}} 5 \left(\alpha^{5^{X}} - \beta^{5^{X}} \right)^{2} > 5 \left\{ \frac{1}{\sqrt{5}} \left(\alpha^{5^{X}} - \beta^{5^{X}} \right) \right\}^{2}$$

 $= 5 F_{5X}^2$,

whence (5) is valid.

For odd $n \ge 3$ we have, by (6^{*}), (10), (8), (9):

$$\begin{split} \mathbf{L}_{n^{X+1}} &= \alpha^{n^{X+1}} + \beta^{n^{X+1}} > \alpha^{2n^{X}} + 3 + \beta^{n^{X+1}} = \alpha^{2n^{X}} - 2 + (5 + \beta^{n^{X+1}}) = \\ &\alpha^{2n^{X}} - 2 + \beta^{2n^{X}} = (\alpha^{n^{X}} + \beta^{n^{X}})^{2} = \mathbf{L}_{n^{X}}^{2} , \end{split}$$

whence

*See editorial remark, page 59.

19

20 ON THE GREATEST PRIMITIVE DIVISORS OF FIBONACCI [Oct. 1963]

$$(\overline{4}^*) \qquad \qquad L_{n^{X+1}} > L_{n^X}^2 \quad (2 \not\mid n, n \ge 3)$$

For even $n \ge 3$ we have, by (6^{*}), (10), (8), (9):

$$L_{n^{X+1}} = \alpha^{n^{X+1}} + \beta^{n^{X+1}} > \alpha^{2n^{X}} + 3 = \alpha^{2n^{X}} + 2 + 1 > \alpha^{2n^{X}} + 2 + \beta^{2n^{X}} = (\alpha^{n^{X}} + \beta^{n^{X}})^{2} = L_{n^{X}}^{2}, \text{ whence}$$

$$(\overline{\overline{4}}^*)$$
 $L_{n^{X+1}} > L^2_{n^X} (2 \mid n, n \geq 3)$

For n = 2 we have the well-known relation: $L_{2x+1} = L_{2x}^2 - 2$, whence

$$(\overline{\overline{4}}^*)$$
 $L_{2^{X+1}} < L_{2^X}^2$

Combining $(\overline{4}^*)$, $(\overline{4}^*)$ and $(\overline{\overline{4}}^*)$ we have (4^*) . <u>Proof of (3), (3*)</u>.

For $p \neq 5$, $(p, F_{p^X}) = 1$. Hence, by the law of repetition of primes in (F_n) , the greatest imprimitive divisor of $F_{p^{X+1}}$ is F_{p^X} , whence, by (4):

$$\mathbf{F}_{p^{x+1}} = \mathbf{F}_{p^{x+1}} / \mathbf{F}_{p^{x}} > \mathbf{F}_{p^{x}}$$

i.e., (3) is valid for $p \neq 5$.

For p = 5, by the law of repetition of primes in (F_n) , the greatest imprimitive divisor of F_{5x+1} is $5F_{5x}$, whence, by (5):

$$F_{5X+1} = F_{5X+1} / 5F_{5X} > F_{5X}$$
,

i.e., $F'_{5x+1} > F_{5x}$, i.e., (3) is valid for p = 5.

For $p \neq 2$, by the law of repetition of primes in (L_n) , the greatest imprimitive divisor of $L_{p^{X+1}}$ is L_{p^X} , whence, by (4*): $L'_{p^{X+1}} = L_{p^{X+1}}/L_{p^X}$ > L_{p^X} , i.e., (3*) is valid for $p \neq 2$.

/**********************************