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In the first issue of the FIBONACCI QUARTERLY, several problems r e -
garding summation of terms of the Fibonacci series were proposed [1], They 
can be solved without too much difficulty by means of intuition followed by 
mathematical induction. The results for the series suggested in the article 
nExploring Fibonacci Numbers1 ? are as follows: 
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The attempt to extend this work by Intuition to such summations as 
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leads to difficulties. One is led therefore to adopt a more mathematical ap-
proach In solving the general case of all Fibonacci series summations with sub-
scripts In arithmetic progression, namely, 
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where a and b are positive Integers and b < a, 
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We recall that Fibonacci numbers can be given in terms of the roots of 
the equation x2 - x - 1 = 0 [2], If these roots are 
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where F is the n term of the Fibonacci sequence 1,1,2 ,3 ,5 , •• • and L 

is the n term of the Lucas sequence 1, 3,4, 7,11,18, •••'•. In these terms 
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One can restate the summations on the right-hand side of the equation by using 
the formula for geometric progressions. 
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There is an entirely similar formula for the n s n summation. Substituting into 
the original formula and combining fractions, one obtains 
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Various simplifications result using the definitions of F and L in terms of 
r and s together with the relation rs = - 1 , the product of the roots in the 
equation x2 - x - 1 = 0 being the constant term - 1 . For example, 



1963 ] FIBONACCI SUMMATIONS 6 9 

a an+a-b a an+a-b , ,a, an-b an-b. , ^a^r , -^ s r - r s = (rs) (r - s ) = (-1) V5 F , . 
; 7 an-b 

The denominator can be transformed Into (-l)a - L +1. Using these relations 
a 

the reader may verify without too much difficulty that the final formula is 
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With this formula particular cases can be handled with little effort. For exam-

ples let a = 79 b = 3 and n = 6„ Then 

6 (-1)7F39 - F46 + (-1)4F3 + F4. 
2 F? = 
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-63245986 - 1836311903 + 2 + 3 
-29 

= 65501996 

This result may be checked by actually summing the series: 

F4 + Fll + F18 + F25 + F32 + F39 or 3 + 89 + 2584 + 75025 + 2178309 
+ 63245986 

the result being 65501996. 
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