A PRIMER FOR THE FIBONAOCI NUMBERS - PART IV
 V. E. hoggatt, JR. AND I. D. RUGGLES, SAN JOSE State COLLEGE

1. INTRODUCTION

In the primer, Part III, it was noted that if $\mathrm{V}=(\mathrm{x}, \mathrm{y})$ is a two-dimensional vector and A is a 2 by 2 matrix, $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $V^{\prime}=A V$ is a twodimensional vector, $V^{\prime}=\left(x^{\prime}, y^{\prime}\right)=(a x+b y, c x+d y)$. Here, V and consequently V^{\prime}, are expressed as column vectors. The matrix A is said to transform, or map, the vector V onto the vector V^{\prime}. The matrix A is called the mapping matrix or transformation matrix.

2. SOME MAPPING MATRICES

The zero matrix, $Z=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, maps every vector V onto the zero vector $\phi=(0,0)$.

The identity matrix, $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ maps every vector V onto itself; that is, $I V=V$.

The matrix $B=\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right)$ maps vectors $\mathrm{V}=(\mathrm{k},-\mathrm{k}), \quad(\mathrm{k}$ any real number), onto the zero vector ϕ. Such a mapping as determined by B is called a many-to-one mapping.

If the only vector mapped onto ϕ is the vector ϕ itself, the mapping is a one-to-one mapping. A matrix A determines a one-to-one mapping of twodimensional vectors onto two-dimensional vectors if, and only if, $\operatorname{det} A \neq 0$. If $\operatorname{det} A \neq 0$, for each vector U, there exists a vector V such that $A V=$ U. Note, however, that for matrix B above, $B\binom{x}{y}=\binom{x+y}{2 x+2 y}$. There is no vector V such that $B V=(0,1)$.
3. GEOMETRIC INTERPRETATIONS OF 2×2 MATRICES
AND 2-DIMENSIONAL VECTORS

As in Primer III, the vector $\mathrm{V}=(\mathrm{x}, \mathrm{y})$ is interpreted as a point in a rectangular coordinate system. Thus the geometric concepts of length, direction, slope and angle are associated with the vector V .

A non-zero scalar multiple of the identity matrix, kI , maps the vector $U=(\mathrm{a}, \mathrm{b})$ onto the vector $\mathrm{V}=(\mathrm{ka}, \mathrm{kb})$. The length of $\mathrm{V},|\mathrm{V}|$, is equal to $|\mathrm{k}|$ $|U|$. There is no change in slope but if $\mathrm{k}<0$ the sense or direction is reversed.

The matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ maps a vector onto the reflection vector with respect to the line through the origin with slope one. Note that different vectors may be rotated through different angles!

The matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ preserves the first component of a vector while annihilating the second component. Every vector $U=(x, y)$ is mapped into a vector on the x-axis.

The matrix $\mathrm{R}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ rotates all vectors through the same angle θ (theta), in a counterclockwise direction if theta is a positive angle. There is no change in length. This seems to contradict the notion of a matrix having vectors whose slopes are not changed but in this case the characteristic values are complex; thus, there are no real characteristic vectors.

4. THE CHARACTERISTIC VECTORS OF THE Q-MATRIX

The Q matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ does not generally preserve the length of a vector $\mathrm{U}=(\mathrm{x}, \mathrm{y})$. Also, different vectors are in general rotated through different angles.

The characteristic equation of the Q matrix is

$$
\lambda^{2}-\lambda-1=0
$$

with roots

$$
\lambda_{1}=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \lambda_{2}=\frac{1-\sqrt{5}}{2}
$$

which are the characteristic roots, or eigenvalues, for Q.
To solve for a pair of corresponding characteristic vectors consider

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\lambda\binom{x}{y}, x^{2}+y^{2} \neq 0 .
$$

Then

$$
(1-\lambda) x+y=0
$$

Thus, a pair of characteristic vectors are

$$
X_{1}=\left(\lambda_{1} x, x\right) \quad,\left|x_{1}\right| \neq 0
$$

with slope

$$
m_{1}=\frac{\sqrt{5}-1}{2} \quad \text { and } \quad x_{2}=\left(\lambda_{2} x, x\right),\left|x_{2}\right| \neq 0
$$

with slope

$$
m_{2}=-\left(\frac{\sqrt{5}+1}{2}\right)
$$

What happens when the matrix Q^{2} is applied to the characteristic vectors X_{1} and X_{2} of matrix Q ? Since

$$
Q^{2} X_{1}=Q\left(Q X_{1}\right)=Q\left(\lambda X_{1}\right)=\lambda Q X_{1}=\lambda^{2} X_{1}
$$

clearly X_{1} is a characteristic vector of the matrix Q^{2} as well as a characteristic vector of matrix Q. The characteristic roots of Q^{2} are the squares of the characteristic roots of matrix Q. In general if λ_{1} and λ_{2} are the characteristic roots of Q then λ_{1}^{n} and λ_{2}^{n} are the characteristic roots of Q^{n}. But the characteristic equation for Q^{n} is

$$
\lambda^{2}-\left(\mathrm{F}_{\mathrm{n}+1}+\mathrm{F}_{\mathrm{n}-1}\right)^{\lambda}+\left(\mathrm{F}_{\mathrm{n}+1} \mathrm{~F}_{\mathrm{n}-1}-\mathrm{F}_{\mathrm{n}}^{2}\right)=0
$$

Recalling that $\mathrm{L}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}+1}+\mathrm{F}_{\mathrm{n}-1}, \mathrm{~F}_{\mathrm{n}+1} \mathrm{~F}_{\mathrm{n}-1}-\mathrm{F}_{\mathrm{n}}^{2}=(-1)^{\mathrm{n}}$, and $\mathrm{L}_{\mathrm{n}}^{2}=5 \mathrm{~F}_{\mathrm{n}}^{2}+$ $4(-1)^{\mathrm{n}}$, it follows that, since $\lambda_{1}=\alpha=(1+\sqrt{5}) / 2$ and $\lambda_{2}=\beta=(1-\sqrt{5}) / 2$,

$$
\alpha^{\mathrm{n}}=\lambda_{1}^{\mathrm{n}}=\left(\mathrm{L}_{\mathrm{n}}+\sqrt{5} \mathrm{~F}_{\mathrm{n}}\right) / 2 \text { and } \beta^{\mathrm{n}}=\lambda_{2}^{\mathrm{n}}=\left(\mathrm{L}_{\mathrm{n}}-\sqrt{5} \mathrm{~F}_{\mathrm{n}}\right) / 2
$$

5. FIBONACCI AND LUCAS VECTORS AND THE Q MATRIX

Let $\mathrm{U}_{\mathrm{n}}=\left(\mathrm{F}_{\mathrm{n}+1}, \mathrm{~F}_{\mathrm{n}}\right)$ and $\mathrm{V}_{\mathrm{n}}=\left(\mathrm{L}_{\mathrm{n}+1}, \mathrm{~L}_{\mathrm{n}}\right)$ be denoted as Fibonacci and Lucas vectors, respectively. We note

$$
\begin{aligned}
\left|U_{n}\right|^{2}= & F_{n+1}^{2}+F_{n}^{2}=F_{2 n+1} \text { and }\left|V_{n}\right|^{2}= \\
L_{n+1}^{2}+ & L_{n}^{2}=\left(5 F_{n+1}^{2}+(-1)^{n+1} 4+5 F_{n}^{2}\right. \\
\left.+(-1)^{n} 4\right)= & 5\left(F_{n+1}^{2}+F_{n}^{2}\right)=5 F_{2 n+1}
\end{aligned}
$$

It is well known that the slopes of the vectors U_{n} and V_{n} (the ratios $\mathrm{F}_{\mathrm{n}} / \mathrm{F}_{\mathrm{n}+1}$ and $\mathrm{L}_{\mathrm{n}} / \mathrm{L}_{\mathrm{n}+1}$) approach the slope, $(\sqrt{5}-1) / 2$, of the characteristic vector, X_{1}.

Since $Q^{m} Q^{n}=Q^{m+n}$, it is easy to verify that

$$
F_{m+1} F_{n+1}+F_{m} F_{n}=F_{m+n+1}
$$

by equating elements in the upper left in the above matrix equation. In a similar manner it follows that

$$
\begin{aligned}
& F_{m+1} F_{n+2}+F_{m} F_{n+1}=F_{m+n+2} \\
& F_{m+1} F_{n}+F_{m} F_{n-1}=F_{m+n}
\end{aligned}
$$

Adding these two equations and using $L_{n+1}=F_{n+2}+F_{n}$ it follows that

$$
\mathrm{F}_{\mathrm{m}+1} \mathrm{~L}_{\mathrm{n}+1}+\mathrm{F}_{\mathrm{m}} \mathrm{~L}_{\mathrm{n}}=\mathrm{L}_{\mathrm{m}+\mathrm{n}+1}
$$

[Dec.

From the above identities it is easy to verify that

$$
\begin{aligned}
Q^{n+1} V_{0} & =Q V_{n}=V_{n+1} \\
Q^{n+1} U_{0} & =Q U_{n}=U_{n+1} \\
Q^{n} V_{m} & =V_{m+n+1} \\
Q^{n} U_{m} & =U_{m+n+1}
\end{aligned}
$$

6. A SPECIAL MATRIX

Let $P=\left(\begin{array}{rr}1 & 2 \\ 2 & -1\end{array}\right)$, then from

$$
\begin{aligned}
L_{n+1} & =F_{n+1}+2 F_{n}, L_{n}=2 F_{n+1}-F_{n}, \\
5 F_{n+1} & =L_{n+1}+2 L_{n}, 5 F_{n}=2 L_{n+1}-L_{n}
\end{aligned}
$$

it follows that

$$
\begin{aligned}
& P U_{n}=\left(F_{n+1}+2 F_{n}, 2 F_{n+1}-F_{n}\right)=V_{n} \\
& P V_{n}=\left(L_{n+1}+2 L_{n}, 2 L_{n+1}-L_{n}\right)=5 U_{n}
\end{aligned}
$$

Also

$$
\begin{aligned}
& P Q^{n}=\left(\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right)\left(\begin{array}{ll}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right)=\left(\begin{array}{ll}
L_{n+1} & L_{n} \\
L_{n} & L_{n-1}
\end{array}\right) \\
& P^{2} Q^{n}=5 Q^{n} \\
& D\left(\begin{array}{lr}
L_{n+1} & L_{n} \\
L_{n} & L_{n-1}
\end{array}\right)=D(P) D\left(Q^{n}\right)=5(-1)^{n+1}
\end{aligned}
$$

We now discuss two geometric properties of matrix P. Let $U=(x, y)$, $\left\|\|^{2}=x^{2}+y^{2} \neq 0\right.$.

$$
P U=(x+2 y, 2 x-y) \quad|P U|^{2}=5\left(x^{2}+y^{2}\right)=5|U|^{2}
$$

Thus matrix P magnifies each vector length by $\sqrt{5}$.
If $\tan \alpha=y / x$, we say $\alpha=\operatorname{Tan}^{-1} y / x$, read " α is an angle whose tangent is y / x." Let $\tan \alpha=\mathrm{y} / \mathrm{x}$ and $\tan \beta=(2 \mathrm{x}-\mathrm{y}) /(\mathrm{x}+2 \mathrm{y})$. From $\tan (\alpha+\beta)$ $=(\tan \alpha+\tan \beta) /(1-\tan \alpha \tan \beta)$ we may now see what effect P has on the slope of vector $U=(x, y)$.

Now (recalling $x^{2}+y^{2} \neq 0$ says x and y are not both zero at the same time.)

$$
\tan (\alpha+\beta)=\tan \left(\operatorname{Tan}^{-1} \frac{y}{x}+\operatorname{Tan}^{-1} \frac{2 x-y}{x+2 y}\right)=\frac{2\left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}
$$

Thus, since $x^{2}+y^{2} \neq 0$, then

$$
\tan (\alpha+\beta)=2
$$

What does this mean? Consider two vectors A and B, the first inclined at an angle α with the positive x-axis and the second inclined at an angle β with the positive x -axis and the angles are measured positively in the counterclockwise direction. The angle bisector, ψ, of the angle between vectors A and \mathbf{B} is such that $\alpha-\psi=\psi-\beta$ whether or not α is greater than β or the other way around. Solving for ψ yields

$$
\psi=(\alpha+\beta) / 2
$$

Thus ψ is the arithmetic average of α and β. Also we note that $\alpha+\beta=2 \psi$. The tangent of double the angle is given by

$$
\tan 2 \psi=(2 \tan \psi) /\left(1-\tan ^{2} \psi\right) .
$$

Let

$$
\tan \psi=\frac{\sqrt{5}-1}{2},
$$

then it is an easy exercise in algebra to find $\tan 2 \psi=2$, but $\tan (\alpha+\beta)=2$, therefore we would like to conclude that the angle bisector between vectors U and PU is precisely one whose slope is $(\sqrt{5}-1) / 2$, but this is the slope of X_{1}, the characteristic vector of Q. Can you show that X_{1} is also a characteristic vector of P ?

We have shown
Theorem 1. The matrix $P=\left(\begin{array}{rr}1 & 2 \\ 2 & -1\end{array}\right)$ maps a vector $U=(x, y)$ into a vector PU such that

$$
\begin{equation*}
|P(U)|=\sqrt{5}|U| \tag{1}
\end{equation*}
$$

and
(2) The angle bisector of the angle between the vector U and the vector $P U$ is X_{1}, a characteristic vector of Q and P. Thus Matrix P reflects vector U across vector X_{1}.

Theorem 2. The vectors U_{n} and V_{n} are equally inclined to the vector X_{1} whose slope is $(\sqrt{5}-1) / 2$.

Corollary. The vectors V_{n} are mapped into vectors $\sqrt{5} U_{n}$ by P and the vectors U_{n} are mapped into V_{n} by P.

7. SOME INTERESTING ANGLES

An interesting theorem is
Theorem 3.

$$
\begin{aligned}
& \operatorname{Tan}\left\{\operatorname{Tan}^{-1} L_{n} / L_{n+1}-\operatorname{Tan}^{-1} \frac{L_{n+1}}{L_{n+2}}\right\}=\frac{(-1)^{n}}{F_{2 n+2}} \\
& \operatorname{Tan}\left\{\operatorname{Tan}^{-1} F_{n} / F_{n+1}-\operatorname{Tan}^{-1} F_{n+1} / F_{n+2}\right\}=\frac{(-1)^{n+1}}{F_{2 n+2}}
\end{aligned}
$$

Theorem 4.

$$
\operatorname{Tan}^{-1} \frac{F_{n}}{F_{n+1}}=\sum_{m=1}^{n}(-1)^{m+1} \operatorname{Tan}^{-1} \frac{1}{F_{2 m}}
$$

We proceed by mathematical induction. For $n=1$, it is easy to verify $\operatorname{Tan}^{-1} 1$ $=\operatorname{Tan}^{-1}\left(1 / F_{2}\right)$.

Assume true for $\mathrm{n}=\mathrm{k}$, that is

$$
\operatorname{Tan}^{-1} \frac{\mathrm{~F}_{\mathrm{k}}}{\mathrm{~F}_{\mathrm{k}+1}}=\sum_{\mathrm{m}=1}^{\mathrm{k}}(-1)^{\mathrm{m}+1} \operatorname{Tan}^{-1} \frac{1}{\mathrm{~F}_{2 \mathrm{~m}}}
$$

But, by Theorem 3,

$$
\operatorname{Tan}^{-1} \frac{\mathrm{~F}_{\mathrm{k}+1}}{\mathrm{~F}_{\mathrm{k}+2}}=\operatorname{Tan}^{-1} \frac{\mathrm{~F}_{\mathrm{k}}}{\mathrm{~F}_{\mathrm{k}+1}}+\operatorname{Tan}^{-1} \frac{(-1)^{\mathrm{k}}}{\mathrm{~F}_{2 \mathrm{k}+2}}
$$

Thus, if

$$
\operatorname{Tan}^{-1} \frac{\mathrm{~F}_{\mathrm{k}}}{\mathrm{~F}_{\mathrm{k}+1}}=\sum_{\mathrm{m}=1}^{\mathrm{k}}(-1)^{\mathrm{m}+1} \operatorname{Tan}^{-1} \frac{1}{\mathrm{~F}_{2 \mathrm{~m}}}
$$

then

$$
\begin{aligned}
& \operatorname{Tan}^{-1} \frac{\mathrm{~F}_{\mathrm{k}+1}}{\mathrm{~F}_{\mathrm{k}+2}}=\sum_{\mathrm{m}=1}^{\mathrm{k}}(-1)^{\mathrm{m}+1} \operatorname{Tan}^{-1} \frac{1}{\mathrm{~F}_{2 \mathrm{~m}}}+\operatorname{Tan}^{-1} \frac{(-1)^{\mathrm{k}}}{\mathrm{~F}_{2 \mathrm{k}+2}} \\
&=\sum_{\mathrm{m}=1}^{\mathrm{k}+1}(-1)^{\mathrm{m}+1} \operatorname{Tan}^{-1} \frac{1}{\mathrm{~F}_{2 \mathrm{~m}}}
\end{aligned}
$$

because $\operatorname{Tan}^{-1}(-X)=-\operatorname{Tan}^{-1} \mathrm{X}$ and $(-1)^{\mathrm{k}}=(-1)^{\mathrm{k}+2}$ and the proof is complete.

8. AN EXTENDED RESULT

Theorem 5. The series

$$
A=\sum_{m=1}^{\infty}(-1)^{m+1} \operatorname{Tan}^{-1} \frac{1}{\mathrm{~F}_{2 \mathrm{~m}}}
$$

converges and $A=\operatorname{Tan}^{-1}(\sqrt{5}-1) / 2$.
Proof: Since the series is an alternating series, and, since $\operatorname{Tan}^{-1} \mathrm{X}$ is a continuous increasing function, then

$$
\operatorname{Tan}^{-1} \frac{1}{\mathrm{~F}_{2 \mathrm{n}}}>\operatorname{Tan}^{-1} \frac{1}{\mathrm{~F}_{2 \mathrm{n}+2}} \text { and } \operatorname{Tan}^{-1} 0=0
$$

The angle A must lie between the partial sums S_{N} and S_{N+1} for every $N>2$ by the error bound in the alternating series, but $S_{N}=\operatorname{Tan}^{-1}\left(F_{N} / F_{N+1}\right)$. Thus the angles of U_{N} and $\mathrm{U}_{\mathrm{N}+1}$ lie on opposite sides of A. By the continuity of $\operatorname{Tan}^{-1} \mathrm{X}$ then

$$
\lim _{n \rightarrow \infty} \operatorname{Tan}^{-1}\left(F_{n} / F_{n+1}\right)=A=\operatorname{Tan}^{-1}(\sqrt{5}-1) / 2 .
$$

Comment: The same result can be obtained simply from

$$
\operatorname{Tan}\left\{\operatorname{Tan}^{-1} \frac{\mathrm{~F}_{\overline{\mathrm{n}}}}{\mathrm{~F}_{\mathrm{n}+1}}-\frac{\sqrt{5}-1}{2}\right\}=(-1)^{\mathrm{n}+1}\left(\frac{\sqrt{5}-1}{2}\right)^{2 \mathrm{n}+1}
$$

Which slope gives a better numerical approximation to $\frac{\sqrt{5}-1}{2}, \mathrm{~F}_{\mathrm{n}} / \mathrm{F}_{\mathrm{n}+1}$ or $L_{n} / L_{n+1} ? \quad H m m m$?

REFERENCES FROM PAGE 60

1. Coxeter, H. S. M., Introduction to Geometry, New York: John Wiley and Sons, 1961.
2. Hambidge, J. Practical Applications of Dynamic Symmetry , New Haven: Yale Press, 1932.
3. Hunter, J.A.H. and Madachy, J.S., Mathematical Diversions, NewJersey: Van Nostrand Co., 1963.
4. Land, F., The Language of Mathematics, London: John Murray, 1960.
5. Thompson, D'Arcy W. , On Growth and Form, New York: McMillan Co., 1944.
