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1, INTRODUCTION 

We define the Fibonacci number s as usual by means of 

F 0 = 05 Fi = 1, F ^ = F + F , (n > 1) . 
u s x n+1 n n - 1 

It i s known that eve ry posi t ive in teger N can be wri t ten in the form 

(1.1) N = F. + F, + . . . + F k , 
kA k 2

 K r 

where 

(1.2) kt => k2 > «»< > k r s= 2 

and r depends on N. We call (1.1) a Fibonacci r epresen ta t ion of N. More-

ove r by the theo rem of Zeckendorfs the r ep resen ta t ion (1.1) i s unique p r o -

vided the k. satisfy the inequali t ies 

(1.3) k. - k + 1 ^ 2 (j = 1, 2, -... , r - 1); k r > 2 . 

Such a r ep resen ta t ion may be called the canonical r epresen ta t ion of N. 

Now le t A, denot 

Then i t i s c l e a r that the 

Now le t A, denote the se t of posi t ive in t ege r s { N } for which k = k. 

A k (k = 2, 3 , 4, • •• ) 
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constitute a partition of the set of positive integers* The chief object of the 
present paper is to describe the numbers in A, in terms of the greatest in-
teger function0 We shall show that 

(1.4) A 2 t = {abt"1a(n) | n = 1, 2, 3, • • - } (t = 1, 2, 3, • • •) , 

(1-5) A 2 t + 1 = ( b W ) | n = 1, 2, 3, • • • } (t = 1, 2, 3, • ••) , 

where 

(1.6) a(n) = [an], b(n) = |>2n] , a = (1 + \[S)/2 

and [x] denotes the greatest integer ^x. As is customary, powers and jux-
taposition of functions should be interpreted as composition. 

Moreover9 we shall show that 

A(2t, 2FT"2) = {abt"1a2(n) | n = 1, 2, 3, • • • } 

A(2t, 2t + 2) =. {ab^abfri) | n = 1, 2, 3, ••• } 

A(2t + 1, 2TT~3) = (bV^n) | n = 1, 2, 3, ••• } 

A(2t + 1, 2t + 3) = ( b W n ) | n = 1 , 2 , 3 , ' " } , 

where A(s9 s + 2) denotes the set of positive integers with canonical 
representation 

r k 1
 + - " + F k r

 + r 8 + 2 + F s 

while A(s5 s + 2) denotes the set with canonical representation 

F. + • • • + F, + F (k > s + 2) 
K.j[ Ky, S r 

Using any Fibonacci representation of N 

N = Fk1
 + Fk2

 + — + F k r 
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we define 

(1-7) e(N) = Vi + Vi + ,--+V1 ' 
The fact that e(N) Is Independent of the Fibonacci representation chosen for 
N was proved In [ 2 ] . 

The following theorems, which will be used in Section 4S were also 
established in [ 2 ]. 

Theorem 1. For every N, e(N + 1) ^ e(N) with equality if and only if 
N is in A2. (See [2J5 p„ 2163 Theorem 5 and proof,) 

Theorem 2. If N is In A2 then neither N - 1 nor N + 1 is In A2* 
(See [2] 9 pe 217? comments following Theorem 5.) 

2. THE ARRAY R 

As in [3] we form the 3-rowed array R as follows: In the first row 
we put the positive integers in natural order* We begin the second row with 
1. To get an entry of the third row9 we add the entries appearing above it in 
the first and second rows* We get further entries in the second row by 
choosing the smallest integer which has not appeared so far in the second or 
third rows0 

1 

1 

2 

2 

3 

5 

3 

4 

7 

4 

6 

10 

5 

8 

13 

6 

9 

15 

7 

11 

18 

8 

12 

20 

9 

14 

23 

10 

16 

26 

.. . 

Note that R is uniquely determined by the following properties: 

(2.2) Every positive integer appears exactly once in row 2 or row 3* 

(2.3) Each row is a monotone sequence. 

(2.4) The sum of the first two rows is the third row* 

Now also consider the 3-rowed array R!„ 
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1 

a<l) 

b(l) 

2 

a(2) 

b(2) 

3 

a(3) 

b(3) 

4 

a(4) 

b(4) 

. . . 

. . . 

where a(n), b(n) are defined by (1.6). Since a. + 1 = a2, properties (2.3) 
and (2.4) are obviously satisfied by Rf. To see that every number appears 
in Rf, let N ^ 2 be arbitrary. We will show that either a([N/a]) or 
b([N/a2]) is N - 1. Suppose not. Then they are both too small; that is , 

<x\N/a] < N - 1 

and 

a2 [N/a2 ] < N - 1 . 

Dividing the first inequality by a, the second by a2, remembering that 

i + i = i . 

a c? 

and adding5 we get 
[N/or] + [N/a2] < N - 1 . 

But this is a contradiction since N/a + N/#2 = N. 
Now to see that the ranges of a and b are disjoint, suppose for some 

numbers N, M and P , we had a(N) = b(M) = P. Then 

aN - 1 < P < aN 

and 

a2M - 1 . < P < a2M . 
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Again dividing and adding, we get 

N + M - 1 < P < N + M J 

a contradict ion. The fact that no number appea r s twice in the same row fol-

lows s imply because both a and a2 a r e g r e a t e r than 1. Note that (2.2) was 

proved using only the fact that a and a2 a r e i r r a t iona l and 

i + i = 1 . 

The r e su l t i s not new3 of c o u r s e 
We have es tabl i shed that R = Rf. 

3. SOME PROPERTIES OF a(n) AND b(n) 

In this sect ion we prove seve ra l equal i t ies involving the functions a(n) 

and b(n). In ou r proof we use only the p r o p e r t i e s (2.2), (2.3) and (2.4) of 

R(=Rf) from Section 2. Of c o u r s e , the equal i t ies could, with much m o r e ef-

f o r t be proved from the definitions (1.6). 

(3.1) N + a(N) = b(N) 

(3.2) b(N) = a(a(N)) + 1 

(3.3) a(N) + b(N) = b(a(N)) + 1 

(3.4) a(b(N)) = b(a(N)) + 1 

(3.5) a(N) + b(N) = a(b(N)) 

(3.6) b2(N) = aba(N) + 2 

(3.7) ab2(N) = b2a(N) + 3 



6 FIBONACCI REPRESENTATIONS [Jan. 

(3.8) b r(N) = a b ^ a C N ) + F 2 (r = 1, 2, • • • ) 

(3.9) abr(N) = b r a ( N ) + F „ (r = 1, 29
 9 6 » ) 

(3.10) b r ( l ) = F 2 r + 1 (r = 1, 2, • • • ) . 

Proof. Equation (3,1) i s (2.4). F o r (3.2), note that in R9 in the th i rd 

row, to b(N), o r the second row to a (J) = b(N) - 1, occur al l the number s 

1, 2 , • • • , b(N). Hence J + N = b(N). The re fo re , by (3.1) J = a(N); that 

i s 9 a(a(N)) = b(N) - 1. Equation (3.3) comes from (3.1) and (3.2). To prove 

(3.4), note that b(a(N)) i s the a(N) en t ry in the third row of R, and 

a(b(N)) i s the b(N) en t ry in the second row. Then the total number of 

e n t r i e s i s a(N) + b(N) = b(a(N)) + 1. Hence b(a(N)) cannot be the l a r g e s t so 

a(b(N)) m u s t be and eve ry in teger ^b(a(N)) + 1 m u s t have appeared . Hence 

a(b(N)) = b(a(N)) + 1. Equation (3.5) i s obvious from (3.3) and (3.4). Equa -

tion (3.6) i s obtained by adding (3.2) and (3.4) and using (3.1) and (3.5). S im-

i l a r ly we get (3.7) by adding (3.4) and (3.6). Equations (3.8) and (3.9) a r i s e 

by induction. If we se t N = 1 in (3.8) we get 

b f t ^ d ) ) = a ( b r _ 1 ( l ) ) + F 2 r _ 1 , 

so9 by (3.1), 

O " 1 ^ = F 2 r - 1 • 

4. THE SETS Afc 

We begin with some p re l im ina ry t h e o r e m s . 

T h e o r e m 3. If N Is in A2, then N + 1 i s In A, with k odd. 
Proof. By T h e o r e m 29 

(4.1) N + 1 = F ^ + F k + . . . + F ^ k^ ^ 2 . 
' r r - 1 "k_ k„ ., k- r 

F o r convenience we le t 

N? = F. + . . . + F. 
k - k-

r - 1 1 
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Then 

FIBONACCI R 

N' + 1 = F. + W k r \-2 + F k r - 1 + N ' 

= F k -4 + F k -3 ^ F k -1 " N ' • 
r r r 

Continuing, we see that N + 1 is either 

F3 + F4 + F6 + • • - + F k _1 + W 
r 

or 

F2 + F3 + F5 + . . . + F k _x + W . 
T 

If the latter.,.. N would be in A3e Hence 

N = F2 + F4 + • • • + F k _1 + N? 

r 

and k is odd, 
r 
Theorem 4, If N and M are in A2 and e(e(N)) = e(e(M)), then 

N = M. 
Proof. Suppose N ^ M* If e(N) = e(M) then by Theorem 1, N and 

M are consecutive Integers and by Theorem 2 could not both be in A2e So 
suppose e(N) < e(M). Then by Theorem 1, e(N) is In A2 and e(M) = 
e(N) + 1. Hence by Theorem 3, e(M) Is in A^ with k odd: 

e(M) = F k + F k + ••• (kr odd) . 
r r - 1 

Let 

k +1 k -+1 
r r -1 

Now e(P) = e(M), but P is In Ak + 1 so P / M* Hence, by Theorem 1 
we must hav* 
the theorem, 
we must have P = M + 1. Hence k is odd, a contradiction. This proves 
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T h e o r e m 5. Le t Q. be the j l a r g e s t number in A2. Then 

e(e(Q )) = j . 

Proof. We can eas i ly see by induction that there a r e exactly F -

number s in A2 whose canonical r ep resen ta t ions involve only F 2 , F 3 , • • • , 

F , for le t C be that set of numbers ; i. e. , N E C if and only if 
n n ' n J 

N = F 2 + • • • + Ff e (kt < n) . 

We want to show that ca rd (C ) = F - and that if N 6 C , N < 
n n - 1 n 

F - . This i s eas i ly checked for smal l n. Suppose i t i s t rue up to n. Then 

C ^ = C U (C - + F _,, ) . n+1 n n - 1 n+1 

Since this union is disjoint , by the induction hypothes is , the conclusion fol-

lows readi ly . 
th The point i s that 1 + F + 1 (n > 3) i s the (1 + F - ) number in A2. 

But 

e (e ( l + F _ , , ) ) = 1 + F , , n+1 n - 1 

i . e . , the value of e(e(«)) on the (1 + F .. ) number of A? i s 1 + F - . ' n - 1 L n - 1 
Hence, s ince e(e(-)) is monotone and 1 - 1 on A2 (Theorems 1 and 

4), we see that e(e(0) s imply counts the m e m b e r s of A2; that i s , 

e(e(Q )) = j 

Now le t N. be defined by the r equ i r emen t s 

(4.3) e(N.) = i, e(N. -• 1) $ i 

(Set e(0) = 0, so that N4 = 1, N2 = 3, e t c . ) 
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Theorem 6. For any Ns e(a(N)) = N and e(b(N)) = a(n). The num-
bers (Nl5 N 2 J * * •) and (Qt + 1, Q2 + 1, -a *) are the second and third rows 
of the array R4. 

Proof. Note that by Theorem 1, e((Q. + 1) - 1) = e(Q. + 1) so that the 
sets {N.} and {Q. +1} are disjoint Furthermore? again by Theorem 1, 
together they exhaust all positive integers. Now to establish the theorem we 
only have to show property (2.4) of Section 2 and then that e(Q. + 1) = N.. 
Suppose for some j that the latter is false. Then, since 

e(e(Q. + 1)) .= e(e(Q.)) = j = e(N.; 

we must have 

e(Q. + 1 ) = N. + 1 
J J 

(since e(N. - 1) ^ j? by (4.3)). Furthermore N. must be in A2. There-
fore e(Q. +1) G A k , k odd, so that 

e(Q + 1) = F + - . + F k (k odd) . 
J r 1 

But then 

V 1 = Fk+ l + - " + F k 1 + l ( k r + 1 6 V e n ) -
J r 1 

Theorem 3 implies that Q. is not in A2, a contradiction. Hence e(Q. + 1) 
j J 

= N.. 3 
Now suppose 

N. = F. + F, + • • • + F. 
i k k - k-
J s s-1 1 

is the canonical representation of N.. Then, since Q + 1 is not in A2, 

V 1 = Fk+i + F k 1 + i + - - - + F k 1 + i • 
J s s-1 1 

so that 
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(4.4) j + N. = e(N.) + N. = Q. + 1. 
J J J J 

This proves the theorem. 
Theorem 7. We have A2 = a2(If) where II is the set of positive in-

tegers, Further, 

(4.5) A 2 t + 1 = bVdf) (t = 1, 2, 3, •••) 

and 

(4.6) A2 t - abt"1a(H) (t = 1 , 2 5 3 5 ^ . ) . 

Proof. We have seen that for any N, 

e(b(N)) = e(a2(N)) = a(N) . 

Hence since b(N) f a2(N) and Q.N+1 = b(N)9 we get Q N = a2(N). This 
shows that A2 = a2(M). Now suppose N is in A3. Then e(N) is in A2 

and e(N) = a2(M) for some M. Hence N is either ba(M) or a3(M). The 
latter is impossible since N is in A3, not A2« Hence A3 = ba(Bf). 

Continuing in this way? we complete the proof of the theorem by 
induction. 

5. SOME ADDITIONAL PROPERTIES 

Since 

(5.1) M = a (If) U b(M) 

it follows from Theorem 7 that 

GO 

(5.2) a(W) = U A9 f 
t=l M 

and 
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00 

(5.3) b * ) = U ^ A ^ . 

Again, by (5.1) 

(5.4) a2(M) = a2(W) U a2b(N) . 

By (3.2) 

a3(n) = ba(n) - 1 . 

Since 9 by (4.5), 

(5.5) ba(lf) = A3 , 

i t follows that 

(5.6) a30f) = A(2, 4 ) , 

where the r igh t m e m b e r denotes the se t of posi t ive in tege r s with canonical 

r ep resen ta t ion 

F
k l

 + ' - - + F k r
 + F 2 ( k r " 4 ) -

Thus by (5.4), we have 

(5.7) a2b(W) = A(2, 4) , 

where the r ight m e m b e r denotes the se t of posi t ive in tegers with canonical 

r ep resen ta t ion 

F + . . . + F k + F 4 + F 2 (kr > 5 ) . 
1 j , 

General ly if we l e t A(s , s + 2) denote the se t of posi t ive in t ege r s with 
canonical r epresen ta t ion 
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F. + • • • + F, + F ^ + F (k > s + 3) 
ki k s+2 s r 

1 r 
and A(s , s + 2) the se t with canonical r epresen ta t ion 

F, + • • • + F, + F (k > s + 2) 
ki k s r 

i r 

then we may s ta te 

T h e o r e m 8. F o r t ^ 1 we have 

(5.8) ab* -^OND = A(2t, 2t + 2) , 

(5.9) ab^abf lSf) = A(2t, 2t + 2) , 

(5.10) b ^ W = A(2t + 1, 2t + 3) , 

(5.11) bVbftf) = A(2t + 1, 2t + 3) 

The proof i s by induction on t. F o r t = 1, Eqs . (5.8) and (5.9) reduce 
to (5.6) and (5.7), respec t ive ly . Next by (5.5) 

(5.12) A3 = ba2(N) U babQW) . 

Le t n E ba2(N); then 

e(n) E a3(N) = A(2S 4) , 

that i s , 

e(n) = F 2 + €F 5 + • . . , 

where € := 0 o r 1. This impl ies e i ther 

n = F 2 + €F6 + ••• o r F 3 + €F 6 + • • • 

The f i r s t possibi l i ty cont rad ic t s (5.3), so that 
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(5.13) ba2dD C A(a 5 5 ) . 

Now take n bab(P)9 so that 

e(n) E a2b(N) = A(2, 4) , 

e(n) = F 2 + F 4 + €F 6 + • . . . . 

This impl ies e i the r 

n = F 2 + F 5 + €FT + • • • o r F 3 + F 5 + €F 7 + • - - . 

The f i r s t poss ibi l i ty cannot occu r , so that 

(5.14) bab(W) C A(33 5) . 

C lea r ly (5.13) and (5.14) prove (5.10) and (5.11) for t = 1. 

We now as sume that (5.8), • • °5 (5.11) hold up to and including the value 

t - 1. Let n e a b t ~ 1 a 2 W s so that 

e(n) E bt"1a2(M) . 

By the inductive hypothesis this gives 

e(n) E A(2t - 1, 2 t~T1) , 

that i s 3 

e(n) = F 2 t _ 1 + 6 F 2 t + 2 + - . - . 

This impl ies 

n = F 2 t + 6 F 2 t + 3 + " - ' 

so that 
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(5.15) abt"1a2(M) C A(2t, 2t + 2) . 

t - 1 Now take n G ab ab(N), so that 

e(n) G b t"1ab(N) . 

Hence by the inductive hypothesis 

e(n) G A(2t - 1, 2t + 1) , 

that i s s 

e(n) = F 2 t _ , + F 2 t + 1 + 6 F 2 t + 3 + • • • . 

This impl ies 

n = F 2 t + F 2 t+2 = €F 2 t + 4 + " e > 

so that 

(5.16) ab t" 1ab(M) C A(2t, 2t + 2) f 

In the next p l ace , take n G b a2(If) , so that 

e(n) G abt"1a2(M) , 

By (5.15) this gives 

e(n) G A(2t, 2t + 2) , 

tha t i s , 

e(n) = F 2 t + €F 2 t + 3 + . . . . 

Then e i ther 
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n = F + €F + •• • 
*2 t+ l CJ?2t+4 

o r 

n = F 2 + F 4 + . . . + F 2 t + €F 2 t + 4 

The second poss ib i l i ty i s ruled out, so that 

(5.17) ab* 1a2(M) C A(2t + 1, 2t + 3) 

Final ly take n E b a b ( H ) , so that 

e(n) E abfc 1 ab^T) 

Then by (5.16), 

e(n) E A(2t, 2t + 2) 

that i s 5 

e(n) = F 2 t + F 2 t + 2 + €F 2 t + 4 + 

Then e i the r 

2t+l 2t+3 2t+5 

o r 

n = F 2 + F 4 + - . . + F 2 t + F 2 t + 3 + €F 2 t + 5 + 

Again the second possibi l i ty i s ru led out, so that 

(5.18) t^abfll) E A(2t + 1, 2t + 3) 
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Combining (5.15), (5.16), (5.17), (5.18), it i s c l e a r that we have c o m -

pleted the induction. 

We define a function A(N) by means of Ml) = 0 and A(N.) = t , where 

N > 1 and t i s the sma l l e s t in teger such that 

(5.19) e^N) = 1. 

Theo rem 9. Le t 

(5.20) N = F k i + F k 2 + - . . + F k r , 

where 

k. - k . + 1 * 2 (j = 1, . . . , r - 1); k r > 2 } 

be the canonical r ep resen ta t ion of N. Then 

( k - 2 (r = 1) 
(5.21) A(N) = k ' „ x ( r ^ D 

Proof. 
1. r = 1. Clear. 
2. r = 2, N = F. + F. 

h k2 

' 2~2'- - ^k l -k2+2 T r 2 e ^ ( N ) = F t . , _ „ + F2 

k k - 2 k - 2 
e r ^ e £ (N) = F4 + F2 

3
k i - 3 ( N ) = F + F 

eki"2(N) = F3 

e k l _ 1 ( N ) = F2 = 1 



1972] FIBONACCI REPRESENTATIONS 17 

3e r > 2. By indue tion. 
Let At denote the set of positive integers N such that 

(5.22) A(N) = t . 

Theorem 10. A, consists of the integers N such that 

(5.23) F t + 1 < N ^ F t + 2 . 

Thus 

(5*24) | A t | = F t . 

Proof. Let N satisfy (4.22) and assume that N has the canonical 
representation (5,20). By (5,21) the value N = F , + 2 satisfies (5*22), For 
all other values of N5 it Is clear that r > 1. Moreover since 

F 2 + F 4 + . . . + F 2 S = F 2 S + 1 - 1 , 

it is clear that N must satisfy 

(5.25) F t + 1 ^ N - F t + 2 . 

Conversely all N that satisfy (5*25) are of the form (5*20) with r > 1. This 
evidently completes the proof. 

Finally we state 
Theorem 11. Let {x} = x - [x] denote the fractional part of the real 

number x. Then 

(5.26) N e a(N) ^ 0 < — < i 

(5.27) N E b ( » «=* - < — < 1 . 
^ J 9 I 
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Proof. We reca l l that 

a(n) = [cm], b(n) = [a2n] . 

Thus N = b(n) is equivalent to 

a2n - N + € (0 < € < 1) , 

so that 

Ji _ ± 

Thus 

Converse ly if 

then 

Thus 

so that 

i a { 4 = i _ ± > i _ J, = i 

- ^ = m + 6, * < € < 1 
a' ,2 Of 

N = a2m + #2e , 

a2(m + 1) = N + a2(l - €) 
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Since 

a2(l - 6) < ^ h - I | = a _ 1 < l 9 

it follows that b(m + 1) = N* 

This p roves (5.27). The equivalence (5*26) follows from (5.27) s ince 

a(N) U b(M) = M . 

6. WORD FUNCTIONS 

By a word function (or briefly a word) Is meant any monomial in the 

a?s and b f s . It i s convenient to Include 1 a s a word. Clear ly if u, v a r e 

any w o r d s , then au f bv. Also if au = av o r bu = bv then u = v. It 

follows readi ly that any word Is uniquely r ep re sen ted a s a product of "p r imes 1 ' 

a3 b. 

We define the weight of a word by m e a n s of 

(6.1) p(l) = 0, p(a) = 1, p(b) = 2 

together with 

(6.2) p(uv) = p(u) + p(v) , 

where u , v a r e a r b i t r a r y words . Thus there i s exactly one word of weight 

1, two of weight 2, and th ree of weight 3. Let N denote the number of 

words of weight p. If w is any word of weight p , then, for p > 2, w = 

au o r bvs where u i s of weight p - 1, v of weight p - 2. Hence 

N = N , + N 0 (p > 2) . 
p p - 1 p -2 

It follows that 

(6.3) N p = F p + 1 (p * 0) , 
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the number of words of weight p i s equal to the Fibonacci number F - .. 

Consider the equation 

(6.4) uv = vu . 

We may a s s u m e without l o s s of genera l i ty that p(u) ^ p(v). It then follows 

from the unique factorizat ion p rope r ty that u = vz , where z i s some word. 

Thus vzv = v2z, so that zv = vz. Thus by an easy induction on the total 

weight of uv we get the following theorem. 

T h e o r e m 12. The words u , v satisfy (6.4) if and only if the re i s a 
r s 

word w such that u = w , v = w , where r , s a r e nonnegative in t ege r s . 
We show next that any word i s " a lmos t " l inea r . More p r ec i s e ly we 

prove 
T h e o r e m 13. Any word w of weight p i s uniquely r ep resen tab le in 

the form 

(6.5) u(n) = F a(n) + F , n - A 
p p - 1 u 

where A i s independent of n. 

Proof. We have 

b(n) = a(n) + n , 

a2(n) = a(n) + n - 1 , 

ab(n) = 2a(n) + n , 

ba(n) = 2a(n) + n - 1 . 

We accordingly a s sume the truth of (6,5) for words u of weight ^ p . 

The re a r e two c a s e s to cons ider , (i) if u = va? then v is of weight p - 1 , 

so that (6.5) gives 

v(n) = F p _ i a ( n ) + F p _ 2 n - Ay 

Hence 
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u(n) = va(n) = F^ -a2(n) + F a(n) - A 
P~x p—Z V 

= F a(n) + F , n - A - F , , p p - 1 v p-1 ? 

(ii) if u = vb5 v Is of weight p - 2, so that 

v(n) = Fp_2a(n) + F ^ n - Ay . 

Then 

u(n) = vb(n) = F^ 9ab(n) + F^ Mn) ~ A 
p — u P""^ V 

= Fp_2(2a(n) + n) + Fp_3(a(n) + n) - A^ 

= ( 2 F p -2 + F p - 3 ) a ( n ) + ( Fp-2 + F p - 3 ) n - Av 
= Fpa(n) + F ^ n - Ay . 

This completes the induetion* 
We now show that the representation (6.5) is unique. Otherwise the 

exist numbers r, s, t such that 

ra(n) + an = t . 

Taking n = 1, 2, 3 we get 

| r + s = t 

J3r + 2s = t 

\ 4 r + 3s = t 

and therefore r = s = t = 0„ 
Incidentally5 we have proved that A sa t i s f ies 

<6-6> \a = A v + V \b = \ 

where v is of weight p. Note that 
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Avab = Ava = Av + F p 5 Avba = Avb + Fp+1 = Av + Fp+1 ' 

Note also that (6.5) implies 

(6.7) Au = F p + 1 - u(l) . 

As an immediate corollary of Theorem 13 we have 
Theorem 14. For arbitrary words, u,v, we have 

(6.8) uv - vu = C , 

where C is independent of n. 
It may be of interest to mention a few special cases of (6.5): 

(6.9) ak(n) = Fka(n) + F ^ n - Ffc+1 + 1, 

(6.10) bk(n) = F2ka(n) + F ^ ^ n , 

(6.11) bk(n) = a2k(n) + F 2 k + 1 - 1 , 

(6.12) (ab)k(n) = F3ka(n) + F g ^ n - ^ F g ^ - 1) , 

(6.13) (ba)k(n) = Fgka(n) + F g ^ n - Fgk_1 , 

(6.14) (ab)k(n) - (ba)k(n) = i ( F g k _ 1 + 1) , 

(6.15) akbJ(n) = F2j+ka(n) + F 2 j + k _ i n - Ffc+1 + 1 . 

(6.16) bVfo) = F2j+ka(n) + F ^ n - F2j+k+1 + F 2 j + 1 , 

(6.17) akbj(n) - bjak(n) = F 2 j + k + 1 - F 2 j + 1 - Ffc+1 + 1 . 

7. GENERATING FUNCTIONS 

Put 
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<7-« *jw = E *n 

n€A. 
(j = 2, 3, 4, • • • ) . 

In view of (4.5) and (4.6), Eq. (5.1) Is equivalent to 

(7.2) 

and 

(7.3) 

Also it i s c l e a r that 

2 r « = £ ab a (n) 

n=l 

2 r+ l » - E . b a(n) 

n=l 

(7.4) r ^ = E *,w • 
j=0 

It follows from the definition of A that 

(7.5) tf>r(x) = x 1 + E *<« 
j=r+2 

(r = 2, 3, 4, • • • ) 

This evidently impl ies 

- F ~F 
(7.6) x r 0 r ( x ) - x r + V r + 1 ( x ) = 0 r + 2 (x ) (r = 2, 3 , 4 , • • • ) 

In p a r t i c u l a r , by (7.5), 
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2(x) = x 1 +]C^to 
**** J 
j = 4 

[Jan-

Combining this with (5.4), we get 

(7.7) (1 + x)02(x) + x03(x) = j -

It is convenient to define 

(7.8) ^ = J2 x' 
n=l 

a(n) 

Since the se t a (If) i s the union of the se t s a2(N) and ab( l l ) , it follows 

from (3.4) that 

(7.9) 0(X) = 02(X) + X0g(x) 

Therefore by (7.7), we have 

(7.10) x$2(x) = 1 - X 0(x) 

and 

(7.11) X ^ 3 ( X ) = _ * _ + (1 + x )0( x ) 

Making use of (7.5), (7.10) and (7.11) we can e x p r e s s all c/>.(x) in t e r m s 

of 0(x). F o r example , s ince 

- 1 -2 
X 02(X) - X 03(x) = 04(x) 9 

we get 
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(7.12) x404(x) = T - ^ - 4 - - (1 + x + x2)#c) . 
X —• x 

Generally we have 

(7.13) x r <pv(x) = ( - l ) r L - i _ - Br(x)<p(x)\ , 

where A (x), B (x) are polynomials that satisfy 

, Ar+2<x) = A r+ l ( x ) + X r + l A r ( x ) 
(7.14) [ r + 2 r + 1 F r + 1

 r 

Er+2< x ) = B r+ l ( x ) + x B r ( x ) 

together with the initial conditions 

' A2fe) = 1, A3(x) = 1, 
< B2(x) = 1, B3(x) = 1 + x 

It follows readily that 

(7.15) B (x) = 
F 

1 - x 
r 1 - x 

while 

F r - 1 
a(j) (7.16) xAr(x) = J^ x 

In conclusion we shall show that the function <£(x) cannot be continued 
across the unit circle. Indeed by a known theorem [1 , p. 315], either 0(x) 
is rational or it has the unit circle for a natural boundary. Moreover, it is 
rational if and only if, for some positive integer m, 
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H I , (7.17) (1 - xMi)0(x) = P(x) , 

where P(x) • is a polynomial. Clearly the coefficients of P(x) are rational 
integers. It follows that 

(7.18) x l i p (1 - x)</>(x) = C5 

where C is rationale On the other hand? if we put 

>w = E k c, x k 
k=l 

so that c. = 0 or 1, it is evident from (7.8) that 

n 
n 

"k ~ a 
k=l 
1>- ~ 

Since this implies 

lim- (1 - x)tf>(x) = i x = 1 a 

we have a contradiction with (7.18). 

8. APPENDIX 

In addition to the canonical representation (1.1) we have another rep-
resentation described In the following 

Theorem 15. Every integer N is uniquely represented in the form 

(8.1) N = F + - . + F k + F 2 k + 1 (k * 0) , 
i r 

where 



1972] FIBONACCI BEPEESENTATIONS 27 

k - k.+ 1 a 2 (j = 1, • • • , r - 1), k r - (2k + 1) a 2 . 

Proof. By (5.2), 

(8.2) a(M) = U A_. 
t=l * 

Hence, by the first proof of Theorem 6, 

" = V A 2 t - 1 
t=l 

This evidently p roves the theorem. 

We may r e fe r to (8,1) a s the second canonical r ep resen ta t ion of N. 

In view of T h e o r e m 15, we le t A„, ^ denote the se t of posit ive inte-

g e r s {N} of the form (8.1), Then the se t s 

zk-fl ~~ 

consti tute a par t i t ion of the posit ive In tegers . C lea r ly 

( 8 ' 3 ) • A 2 k + 1 = A 2 k + 1 (k = 1, 2, 3 , • • • ) , 

while 

(8.4) At = U AQf = aft)). 
t=l 2t 

F o r N E A1? if 

(8.5) N = F f c + . . . + F k + Ft 
l , r 

k. - k j + 1 ^ 2 (j = 1, • • - , r - 1), k r > 3 
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then clearly we may replace FA by F2 and (8.5) reduces to the first canoni-
cal representation,, In this case, then, N E A2. However, if k = 3 , the 
situation is less simple. For example 

8 = F6 = F5 + F3 + Fi . 

Generally, since 

F t + F 3 + F 5 + . . . + F 2 s _ 1 = F 2 g , 

it follows that if the number N has the second canonical representation 

N = F l + P l + . . . * F 2 g _ 1 + F k i + F k 2 + . . . , 

where 

k j + 1 - kj - 2 (J - 1). h - 2s + 2 , 

then N E A and conversely. 
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