FIBONACCI REPRESENTATIONS OF HIGHER ORDER - II

* L. CARLITZ and RICHARD SCOVILLE Duke University, Durham, North Carolina and V. E. HOGGATT, JR.

San Jose State College, San Jose, California

1. INTRODUCTION

Let $N \geq 2$ be a fixed integer. We wish to discuss various properties of sequences $\left\{v_{n}\right\}(n=0, \pm 1, \pm 2, \cdots)$ of complex numbers satisfying the recurrence

$$
\mathrm{v}_{\mathrm{n}+\mathrm{N}}=\mathrm{v}_{\mathrm{n}+\mathrm{N}-1}+\cdots+\mathrm{v}_{\mathrm{n}+1}+\mathrm{v}_{\mathrm{n}} \quad(\mathrm{n}=0, \pm 1, \pm 2, \cdots)
$$

We let be the set of sequences satisfying (1.1) and we let be the set of all sequences $\delta_{n}(n=0, \pm 1, \pm 2, \ldots)$ which are non-zero on only a finite number of coordinates. For $\delta \in \mathbb{D}$ and $v \in \mathbb{W}$ we define

$$
\delta(\mathrm{v})=\sum \delta_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}
$$

We will call $\delta \in$ canonical if

$$
\begin{equation*}
\delta_{i} \neq 0 \Rightarrow \delta_{i}=1 \quad(i=0, \pm 1, \cdots) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{i} \delta_{i+1} \cdots \delta_{i+N-1}=0 \quad(i=0, \pm 1, \cdots) \tag{1.3}
\end{equation*}
$$

We will say ϵ and $\epsilon^{\prime} \in$ iD are equivalent $\left(\epsilon \equiv \epsilon^{\prime}\right)$ if $\epsilon(\mathrm{v})=\epsilon^{\prime}(\mathrm{v})$ for all $\mathrm{v} \in \mathrm{R}$.

We shall also have occasion to use the translation operator T on sequences from or defined by

$$
\begin{equation*}
(T v)_{n}=v_{n+1} \quad(v \in D \text { or } W) . \tag{1.4}
\end{equation*}
$$

*Supported in part by NSF Grant GP-17031.

The main theorem of the present paper is the following.
Theorem A. Let $\in \in$ have integral coordinates. Then either ϵ or - $\boldsymbol{\epsilon}$ is equivalent to a canonical element of $\mathbf{1 D}$.

We use this theorem first to generalize a result of Klarner's [4] for Fibonacci numbers to $N^{\text {th }}$ order Fibonacci numbers $P=\left\{P_{n}\right\}$ defined by
(i)

```
P}\in
```

(ii)

$$
P_{-(N-2)}=\cdots=P_{0}=0, \quad P_{1}=1
$$

The generalization is as follows:
Theorem B. Let $K_{1}, K_{2}, \cdots, K_{N}$ be positive integers. Then there is a unique canonical $\delta \in$ such that

$$
\begin{equation*}
\mathrm{K}_{\mathrm{i}}=\delta\left(\mathrm{T}^{\mathrm{i}} \mathrm{P}\right) \quad(\mathrm{i}=1,2, \cdots, \mathrm{~N}) \tag{1.5}
\end{equation*}
$$

If γ is a root of

$$
\begin{equation*}
x^{N}-x^{N-1}-\cdots-x-1=0 \tag{1.6}
\end{equation*}
$$

we let $\underline{\gamma}$ be the sequence in W defined by

$$
\begin{equation*}
\underline{(\underline{\gamma}}_{\mathrm{n}}=\gamma^{\mathrm{n}} . \tag{1.7}
\end{equation*}
$$

We let α be the largest positive root of (1.6). Note that $\alpha>1$.
As a corollary to the main theorem we get
Theorem C. A positive real number x is of the form $\delta(\underline{\alpha})$ for some canonical $\delta \in \mathbb{D}$ if and only if, for some positive k and some integers Q_{1}, $\mathrm{Q}_{2}, \cdots, \mathrm{Q}_{\mathrm{N}}$ we have

$$
\begin{equation*}
\alpha^{\mathrm{k}} \mathrm{x}=\mathrm{Q}_{1}+\mathrm{Q}_{2} \alpha+\cdots+\mathrm{Q}_{\mathrm{N}} \alpha^{\mathrm{N}-1} \tag{1.8}
\end{equation*}
$$

In Section 4, we assume that $\mathrm{N}=3$ and verify some conjectures of Hoggatt concerning certain functions introduced and discussed in [1], [2] and
[3]. The authors believe that the results obtained in Section 4 for the case $\mathrm{N}=3$ are strongly indicative of those that might hold for larger values of N .

2. PROPERTIES OF CANONICAL ELEMENTS

Theorem 1. Suppose δ and $\epsilon \in$ are canonical. Then either $\delta-\epsilon$ or $\epsilon-\delta$ is equivalent to $\gamma \in \mathbf{H}$.

Proof. The non-zero coordinates of $\eta=\delta-\epsilon$ are 1's and -1's. Suppose the first non-zero coordinate of η (starting from the left) is -1 , and let $\eta_{\mathrm{k}}=1$ be the first 1 . Now change η_{k} to 0 and add 1 to each of $\eta_{\mathrm{k}-1}, \eta_{\mathrm{k}-2}, \cdots, \eta_{\mathrm{k}-\mathrm{N}^{*}}$ The resulting sequence is equivalent to η, and since δ and ϵ are canonical, it can be seen that not all of $\eta_{\mathrm{k}-1}+1, \cdots$, $\eta_{\mathrm{k}-\mathrm{N}}+1$ are 0 . Performing this "change" repeatedly, we finally come to a sequence η^{\prime} equivalent to η all of whose non-zero coordinates are either 1 or -1 . This of course implies that either η or $-\eta$ is equivalent to a canonical element of \mathbf{D}.

Theorem 2. Let $\epsilon \in \mathbb{D}$ have integral coordinates. Then either ϵ or $-\epsilon$ is equivalent to a canonical element of \mathbf{D}. If the coordinates of ϵ are non-negative then ϵ is equivalent to a canonical element of \mathbf{D}.

Proof. We set $\epsilon=\epsilon^{+}-\epsilon^{-}$. The previous theorem shows that the first statement of the present theorem follows from the second; so we assume $\boldsymbol{\epsilon}=\epsilon^{+}$.

Now a simple induction shows that it is enough to prove the following statement: If ϵ is canonical, then $\epsilon+\chi_{i}$ is equivalent to a canonical element, where x_{i} is defined by

$$
\begin{equation*}
x_{i}(\mathrm{~V})=\mathrm{v}_{\mathbf{i}} \quad \mathrm{v} \in \mathbb{V} \tag{2.1}
\end{equation*}
$$

Note that $\epsilon+\chi_{\mathrm{i}}=\epsilon-\chi_{\mathrm{i}-1}-\cdots-\chi_{\mathrm{i}-\mathrm{N}+1}+\chi_{\mathrm{i}+1} \equiv \gamma_{1}+\chi_{\mathrm{i}+1}$ where, by Theorem 1 either γ_{1} or $-\gamma_{1}$ is canonical. If $-\gamma_{1}$ is canonical, then again by Theorem 1, $\gamma_{1}+\chi_{i+1}$ is equivalent to a canonical element. Hence we may suppose γ_{1} is canonical. Then we get

$$
\epsilon+\chi_{i} \equiv \gamma_{1}+\chi_{i+1} \equiv \gamma_{2}+\chi_{i+2} \equiv
$$

with $\gamma_{1}, \gamma_{2}, \cdots$ canonical. But this is impossible for, if so, we would have

$$
\begin{equation*}
\left[\epsilon+x_{\mathrm{i}}\right](\underline{\alpha}) \geq x_{\mathrm{i}+\mathrm{n}} \underline{(\alpha)}=\alpha^{\mathrm{i}+\mathrm{n}} \quad(\mathrm{n}=1,2, \cdots) . \tag{2.2}
\end{equation*}
$$

This completes the proof.
Let $P \in$ be the sequence defined by the initial conditions

$$
\begin{equation*}
P_{-(N-2)}=\cdots=P_{0}=0 ; \quad P_{1}=1 \tag{2.3}
\end{equation*}
$$

Theorem 3. Let K be a positive integer. Then there is a unique canonical $\delta \in \mathbb{D}$ such that, for all n,

$$
\begin{equation*}
P_{n} K=\sum_{i} \delta_{i} P_{i+n} \tag{2.4}
\end{equation*}
$$

Proof. Let $\epsilon \in \mathbb{D}$ be the sequence

$$
\epsilon_{\mathrm{n}}=\left\{\begin{array}{cc}
\mathrm{K} & \mathrm{n}=0 \tag{2.5}\\
0 & \text { otherwise }
\end{array}\right.
$$

Then by Theorem 2 there is a unique canonical $\delta \in$ satisfying

$$
\begin{equation*}
\epsilon(\mathrm{v})=\delta(\mathrm{v}), \quad \mathrm{v} \in \boldsymbol{V} \tag{2.6}
\end{equation*}
$$

Letting v be translates of P we get (2.4) immediately since $\epsilon(v)=v_{0} K$ for any $v \in W$.

The uniqueness of δ will follow if we can show that any $\gamma \in \mathbb{V}$ is determined by its value on translates of P. We state this as a separate theorem.

Theorem 4. W is N-dimensional as a complex vector space. It is spanned by $P, T P, \cdots, T^{N-1} P$. Moreover, the $N \times N$ matrix

$$
\Delta_{i}=\left\{\left(\mathrm{T}^{\left.\left.\mathrm{j}_{P}\right)_{\mathrm{n}}\right\} \quad} \begin{array}{l}
(\mathrm{j}=0,1, \cdots, \mathrm{~N}-1) \\
(\mathrm{n}=0, \mathrm{i}+1, \cdots, \mathrm{i}+\mathrm{N}-1)
\end{array}\right.\right.
$$

has determinant

$$
\left|\Delta_{i}\right|=\left((-1)^{N+1}\right)^{\mathrm{i}+1}
$$

Proof. The fact that V is N-dimensional is well-known, so the calculation of the determinant will complete the proof: we have

$$
\Delta_{i}=\left(\begin{array}{cccc}
P_{i} & P_{i+1} & \cdots & P_{i+n-1} \\
P_{i+1} & P_{i+2} & \cdots & P_{i+n} \\
\vdots & & & \\
P_{i+n-1} & & \cdots & P_{i+2 n-2}
\end{array}\right)
$$

Adding the last N-1 columns to the first, using the recurrence and interchanging columns we get

$$
\begin{equation*}
\left|\Delta_{i}\right|=(-1)^{N+1}\left|\Delta_{i+1}\right| \tag{2.7}
\end{equation*}
$$

But

$$
\Delta_{-(N-2)}=\left(\begin{array}{cccccc}
0 & 0 & \cdots & 0 & 0 & 1 \\
0 & 0 & \cdots & 0 & 1 & 1 \\
0 & 1 & \cdots & & & \\
1 & 1 & \cdots & & &
\end{array}\right)
$$

so that

$$
\left|\Delta_{-(N-2)}\right|=(-1)^{N+1}
$$

Hence

$$
\left|\Delta_{i}\right|=\left((-1)^{N+1}\right)^{i+1}
$$

Theorem 5. Let $v \in \mathbb{V}$. Then
(2.8) $\mathrm{v}=\mathrm{v}_{0} \mathrm{TP}+\left(\mathrm{v}_{1}-\mathrm{v}_{0}\right) \mathrm{P}+\left(\mathrm{v}_{2}-\mathrm{v}_{1}-\mathrm{v}_{0}\right) \mathrm{T}^{-1}+\ldots$

$$
+\left(\mathrm{v}_{\mathrm{N}-1}+\cdots-\mathrm{v}_{1}-\mathrm{v}_{0}\right) \mathrm{T}^{-(\mathrm{N}-2)} \mathrm{P} .
$$

Proof. Let $0 \leq \mathrm{j} \leq \mathrm{N}-1$. The $\mathrm{j}^{\text {th }}$ coordinate of the right side is

$$
\begin{aligned}
\mathrm{v}_{0} \mathrm{P}_{\mathrm{j}+1}+\left(\mathrm{v}_{1}+\right. & \left.\mathrm{v}_{0}\right) \mathrm{P}_{\mathrm{j}}+\cdots+\left(\mathrm{v}_{\mathrm{N}-1}-\cdots-\mathrm{v}_{1}-\mathrm{v}_{0}\right) \mathrm{P}_{\mathrm{j}-(\mathrm{N}-2)} \\
= & \mathrm{v}_{0}\left(\mathrm{P}_{\mathrm{j}+1}-P_{\mathrm{j}}-\cdots-P_{\mathrm{j}-(\mathrm{N}-2)}\right) \\
& +\mathrm{v}_{1}\left(\mathrm{P}_{\mathrm{j}}-\mathrm{P}_{\mathrm{j}-1}-\cdots-P_{\mathrm{j}-(\mathrm{N}-2)}\right) \\
& +\mathrm{v}_{\mathrm{k}}\left(\mathrm{P}_{\mathrm{j}+1-\mathrm{k}}-\cdots-P_{\mathrm{j}-(\mathrm{N}-2)}\right) \\
& \vdots \\
& +v_{\mathrm{N}-2}\left(P_{\mathrm{j}-(\mathrm{N}-2)+1}-P_{\mathrm{j}-(\mathrm{N}-2)}\right) \\
& +\mathrm{v}_{\mathrm{N}-1}\left(\mathrm{P}_{\mathrm{j}-(\mathrm{N}-2)}\right)
\end{aligned}
$$

The coefficient of v_{k} is non-zero only when $j+1-k=1$, i. e., only when $\mathrm{k}=\mathrm{j}$. In this case it is 1 .

We can generalize a theorem proved by Klarner for the Fibonacci numbers as follows.

Theorem 6. Let $K_{1}, K_{2}, K_{3}, \cdots, K_{N}$ be positive integers. Then there is a unique canonical δ such that

$$
\begin{equation*}
K_{i}=\delta\left(T^{i} P\right) \quad(i=1,2, \cdots, N) \tag{2.10}
\end{equation*}
$$

Proof. It will be enough to find a canonical δ satisfying

$$
\begin{equation*}
K_{i}=\delta\left|\mathrm{T}^{i-(N-1)} \mathrm{P}\right\rangle \quad(i=1,2, \cdots, N) \tag{2.11}
\end{equation*}
$$

because then a translate of δ will satisfy (2.10). Let γ be one of the N roots of $x^{N}-x^{N-1}-\cdots-x-1=0$, and let

$$
\begin{equation*}
\mathrm{v}=\underline{\gamma} . \tag{2.12}
\end{equation*}
$$

Then by the previous theorem, if δ exists and satisfies (2.11) it must also satisfy

1972] FIBONACCI REPRESENTATIONS OF HIGHER ORDER - II

$$
\begin{aligned}
\delta(\underline{\gamma}) & =\mathrm{K}_{\mathrm{N}}+(\gamma-1) \mathrm{K}_{\mathrm{N}-1}+\cdots+\left(\gamma^{\mathrm{N}-1}-\gamma^{\mathrm{N}-2}-\cdots-\gamma-1\right) \mathrm{K}_{1} \\
& =\frac{1+\gamma+\cdots+\gamma^{\mathrm{N}-1}}{\gamma^{\mathrm{N}}} \mathrm{~K}_{\mathrm{N}}+\frac{1+\gamma+\cdots+\gamma^{\mathrm{N}-2}}{\gamma^{\mathrm{N}-1}}+\cdots+\frac{1}{\gamma} \mathrm{~K}_{1} \\
& =\mathrm{K}_{\mathrm{N}} \gamma^{-\mathrm{N}}+\left(\mathrm{K}_{\mathrm{N}}+\mathrm{K}_{\mathrm{N}-1}\right) \gamma^{-(\mathrm{N}-1)}+\cdots+\left(\mathrm{K}_{\mathrm{N}}+\cdots+\mathrm{K}_{1}\right) \gamma^{-1}
\end{aligned}
$$

Hence we should define δ to be the unique canonical form in \mathbb{D} equivalent to $\beta \in \mathbb{D}$ where β is given by

$$
\beta_{\mathrm{i}}=\left\{\begin{array}{cc}
\mathrm{K}_{\mathrm{N}}+\ldots+\mathrm{K}_{\mathrm{i}} & (-\mathrm{N} \leq \mathrm{i} \leq-1) \tag{2.14}\\
0 & \text { (otherwise) }
\end{array}\right\}
$$

Now

$$
\begin{align*}
\beta\left(T^{i-(N-1)} P\right) & =\sum_{j=1}^{N}\left(K_{N}+\cdots+K_{j}\right) P_{-j+i-(N-1)} \tag{2.15}\\
& =\sum_{t=1}^{N} K_{t}\left(\sum_{j=1}^{t} P_{-j+i-(N-1)}\right)=K_{i} .
\end{align*}
$$

3. FURTHER APPLICATIONS OF THE MAIN THEOREM

We recall that α is the largest positive root of

$$
x^{N}-x^{N-1}-\cdots-x-1=0
$$

and

$$
\underline{\alpha}=\left(\ldots, \alpha^{-1}, 1, \alpha, \cdots\right)
$$

Theorem 7. Let K be any positive integer. Then there exists a unique canonical $\delta \in \mathbb{D}$ such that

$$
\mathrm{K}=\delta(\underline{\alpha}) .
$$

Moreover,

$$
K=\delta(P)
$$

Proof. Choose δ as in Theorem 3. Then

$$
\delta(\underline{\alpha})=\epsilon(\underline{\alpha})=\mathrm{K} .
$$

Theorem 8. A positive real number x is of the form $\delta(\underline{\alpha})$ for some canonical $\delta \in \mathbb{D}$ if and only if, for some positive k and some integers Q_{1}, $\mathrm{Q}_{2}, \cdots, \mathrm{Q}_{\mathrm{N}}$ we have

$$
\begin{equation*}
\alpha^{\mathrm{k}} \mathrm{x}=\mathrm{Q}_{1}+\mathrm{Q}_{2} \alpha+\cdots+\mathrm{Q}_{\mathrm{N}} \alpha^{\mathrm{N}-1} \tag{3.1}
\end{equation*}
$$

Proof. Suppose first that x is of the form $\delta(\underline{\alpha})$:

$$
\begin{equation*}
x=\sum_{j=-k} \epsilon_{j} \alpha^{j} \tag{3.2}
\end{equation*}
$$

Then

$$
\alpha^{\mathrm{k}} \mathrm{x}=\sum_{\mathrm{j}=0} \epsilon_{\mathrm{j}} \alpha^{\mathrm{j}+\mathrm{k}}
$$

and powers of α higher than $\alpha^{\mathrm{N}-1}$ can be successively reduced to lower powers eventually giving (3.1).

Now suppose (3.1) holds. Let $\in \in \in$ be defined by

$$
\epsilon_{\mathrm{n}}=\left\{\begin{array}{cc}
\mathrm{Q}_{\mathrm{n}+\mathrm{k}+1} & -\mathrm{k} \leq \mathrm{n} \leq \mathrm{N}-\mathrm{k}-1 \tag{3.3}\\
0 & \text { otherwise }
\end{array}\right.
$$

Then either ϵ or $-\epsilon$ is equivalent to a canonical element $\delta \in \mathbb{D}$. But

$$
\epsilon(\alpha)=\mathrm{x}>0
$$

Hence we must have $\in \equiv \delta$.

4 。
For the notation used in the remainder of the paper we refer the reader to [3].

Let $\nu_{k}(\mathbb{M})$ denote the number of numbers $n \in C_{k}$ such that $n \leq M$.
Theorem 9. If $\mathrm{M} \notin \mathrm{C}_{2}$ then
(4.1)

$$
\nu_{2}(\mathrm{M})=\mathrm{M}-\mathrm{f}(\mathrm{M})
$$

More generally, if

$$
\mathrm{M} \notin \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \cdots \cup \mathrm{C}_{\mathrm{r}}
$$

then

$$
\begin{equation*}
\nu_{r}(\mathbb{M})=\mathrm{f}^{\mathrm{r}-2}(\mathbb{M})-\mathrm{f}^{\mathrm{r}-1}(\mathbb{M}) \quad(\mathrm{r}=2,3,4, \cdots) \tag{4.2}
\end{equation*}
$$

Proof. Let

$$
\mathrm{K}_{\mathrm{r}}=\left\{\mathrm{K} \mid \mathrm{K} \notin \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \cdots \cup \mathrm{C}_{\mathrm{r}}\right\}, \quad \mathrm{r} \geq 2
$$

and let $\mathrm{K}_{1}=$. Then clearly $\mathrm{f}^{\mathrm{r}-1}$ is $1-1$, onto and monotone from K_{r} to N. In particular,
(4.3) $\operatorname{card}\left\{K \mid K \in K_{r}, K \leq M\right\}=f^{r-1}(M) \quad(r=1,2, \cdots)$.

Hence
$\begin{aligned} \nu_{r}(M)=\operatorname{card}\{K \mid K & \left.\in C_{r} ; K<M\right\}=\operatorname{card}\left\{K \mid K \in K_{r-1}, K \leq M\right\} \\ & -\operatorname{card}\left\{K \mid K \in F_{r}, K \leq M\right\}=f_{r-2(M)}, f^{r-1}(M) .\end{aligned}$

$$
-\operatorname{card}\left\{\mathrm{K} \mid \mathrm{K} \in \mathrm{~F}_{\mathrm{r}}, \mathrm{~K} \leq \mathrm{M}\right\}=\mathrm{fr}-2(\mathrm{M})-\mathrm{f}^{\mathrm{r}-1}(\mathrm{M})
$$

The following theorem is an immediate corollary. Theorem 10. We have

$$
\begin{equation*}
\nu_{2}\left(G_{n}\right)=G_{n}-G_{n-1}=G_{n-2}+G_{n-3} \quad(n \geq 3) \tag{4.4}
\end{equation*}
$$

More generally
(4.5) $\quad \nu_{r}\left(G_{n}\right)=G_{n-r+2}-G_{n-r+1}=G_{n-r}+G_{n-r-1} \quad(n \geq r+1)$.

Theorem 11. Let k and r be fixed integers, $k \geq 1, r \geq 2$. Then

$$
\begin{equation*}
\nu_{r}\left(k G_{n}\right)=k\left(G_{n-r}+G_{n-r-1}\right) \tag{4.6}
\end{equation*}
$$

for n sufficiently large.
Proof. Using Theorem 3, we let $\delta \in \mathbb{D}$ be canonical such that

$$
\begin{equation*}
k G_{n}=\sum \delta_{i} G_{i+n}, \quad(n=0,1,2, \cdots) \tag{4.7}
\end{equation*}
$$

Hence for n sufficiently large we will have

$$
\mathrm{kg}_{\mathrm{n}} \notin \mathrm{C}_{2} \cup \cdots \cup \mathrm{C}_{\mathrm{r}}
$$

so

$$
\begin{align*}
\nu_{r}\left(k G_{n}\right) & =f^{r-2}\left(k G_{n}\right)-f^{r-1}\left(k G_{n}\right) \\
& =\sum \delta_{i} G_{i+n-(r-2)}-\sum \delta_{i} G_{i+n-(r-1)} \\
& =k G_{n-(r-2)}-k G_{n-(r-1)} \tag{4.8}\\
& =k\left(G_{n-r}+G_{n-r-1}\right) .
\end{align*}
$$

The last three theorems were conjectured by Hoggatt.

REFERENCES

1. L. Carlitz, V. E. Hoggatt, Jr., and Richard Scoville, "Fibonacci Representations," Fibonacci Quarterly, Vol. 10 (1972), pp. 1-28.
[Continued on page 94.]
