FIBONACCI REPRESENTATIONS OF HIGHER ORDER - II * L. CARLITZ and RICHARD SCOVILLE

Duke University, Durham, North Carolina

and V. E. HOGGATT, JR. San Jose State College, San Jose, California

1. INTRODUCTION

Let $N\geq 2$ be a fixed integer. We wish to discuss various properties of sequences $\{v_n\}~(n$ = 0, ±1, ±2, $\cdots)$ of complex numbers satisfying the recurrence

(1.1)
$$v_{n+N} = v_{n+N-1} + \cdots + v_{n+1} + v_n$$
 (n = 0, ±1, ±2, ···).

We let \mathbf{W} be the set of sequences satisfying (1.1) and we let \mathbf{D} be the set of all sequences δ_n (n = 0, ±1, ±2, ...) which are non-zero on only a finite number of coordinates. For $\delta \in \mathbf{D}$ and $v \in \mathbf{W}$ we define

$$\delta(\mathbf{v}) = \sum \delta_n \mathbf{v}_n$$
.

We will call $\,\delta\in{\rm I\!D\,}\,$ canonical if

(1.2)
$$\delta_i \neq 0 \implies \delta_i = 1$$
 $(i = 0, \pm 1, \cdots)$

and

(1.3)
$$\delta_i \delta_{i+1} \cdots \delta_{i+N-1} = 0$$
 (i = 0, ±1, ···).

We will say ϵ and $\epsilon' \in \mathbb{D}$ are <u>equivalent</u> ($\epsilon = \epsilon'$) if $\epsilon(v) = \epsilon'(v)$ for all $v \in \mathbb{R}$.

We shall also have occasion to use the translation operator T on sequences from ${\rm I\!D}$ or ${\rm V\!\!V}$ defined by

(1.4)
$$(\operatorname{Tv})_n = \operatorname{v}_{n+1}$$
 $(v \in \mathbb{D} \text{ or } \mathbb{V})$.

* Supported in part by NSF Grant GP-17031.

The main theorem of the present paper is the following.

<u>Theorem A.</u> Let $\epsilon \in \mathbb{D}$ have integral coordinates. Then either ϵ or $-\epsilon$ is equivalent to a canonical element of \mathbb{D} .

We use this theorem first to generalize a result of Klarner's [4] for Fibonacci numbers to N^{th} order Fibonacci numbers $P = \{P_n\}$ defined by

(i) $P \in \mathbf{W}$ (ii) $P_{-(N-2)} = \cdots = P_0 = 0, P_1 = 1.$

The generalization is as follows:

<u>Theorem B.</u> Let K_1, K_2, \dots, K_N be positive integers. Then there is a unique canonical $\delta \in \mathbf{D}$ such that

(1.5)
$$K_i = \delta(T^1 P)$$
 (i = 1, 2, ..., N).

If γ is a root of

(1.6)
$$x^{N} - x^{N-1} - \cdots - x - 1 = 0$$

we let $\underline{\gamma}$ be the sequence in \mathbf{W} defined by

$$(1.7) \qquad (\underline{\gamma})_n = \gamma^n .$$

We let α be the largest positive root of (1.6). Note that $\alpha > 1$.

As a corollary to the main theorem we get

<u>Theorem C</u>. A positive real number x is of the form $\delta(\underline{\alpha})$ for some canonical $\delta \in \mathbf{D}$ if and only if, for some positive k and some integers Q_1 , Q_2 , \cdots , Q_N we have

(1.8)
$$\alpha^{k}_{x} = Q_{1} + Q_{2}\alpha + \cdots + Q_{N}\alpha^{N-1}$$

In Section 4, we assume that N = 3 and verify some conjectures of Hoggatt concerning certain functions introduced and discussed in [1], [2] and

[3]. The authors believe that the results obtained in Section 4 for the case N = 3 are strongly indicative of those that might hold for larger values of N.

73

2. PROPERTIES OF CANONICAL ELEMENTS

<u>Theorem 1.</u> Suppose δ and $\epsilon \in \mathbb{D}$ are canonical. Then either $\delta - \epsilon$ or $\epsilon - \delta$ is equivalent to $\gamma \in \mathbb{D}$.

<u>Proof.</u> The non-zero coordinates of $\eta = \delta - \epsilon$ are 1's and -1's. Suppose the first non-zero coordinate of η (starting from the left) is -1, and let $\eta_k = 1$ be the first 1. Now change η_k to 0 and add 1 to each of η_{k-1} , η_{k-2} , \cdots , η_{k-N} . The resulting sequence is equivalent to η , and since δ and ϵ are canonical, it can be seen that not all of $\eta_{k-1} + 1$, \cdots , $\eta_{k-N} + 1$ are 0. Performing this "change" repeatedly, we finally come to a sequence η ' equivalent to η all of whose non-zero coordinates are either 1 or -1. This of course implies that either η or $-\eta$ is equivalent to a canonical element of **D**.

<u>Theorem 2.</u> Let $\epsilon \in \mathbb{D}$ have integral coordinates. Then either ϵ or $-\epsilon$ is equivalent to a canonical element of \mathbb{D} . If the coordinates of ϵ are non-negative then ϵ is equivalent to a canonical element of \mathbb{D} .

<u>Proof.</u> We set $\epsilon = \epsilon^+ - \epsilon^-$. The previous theorem shows that the first statement of the present theorem follows from the second; so we assume $\epsilon = \epsilon^+$.

Now a simple induction shows that it is enough to prove the following statement: If ϵ is canonical, then $\epsilon + \chi_i$ is equivalent to a canonical element, where χ_i is defined by

$$\chi_i(V) = v_i \qquad v \in \mathbf{V} .$$

Note that $\epsilon + \chi_i = \epsilon - \chi_{i-1} - \cdots - \chi_{i-N+1} + \chi_{i+1} \equiv \gamma_1 + \chi_{i+1}$ where, by Theorem 1 either γ_1 or $-\gamma_1$ is canonical. If $-\gamma_1$ is canonical, then again by Theorem 1, $\gamma_1 + \chi_{i+1}$ is equivalent to a canonical element. Hence we may suppose γ_1 is canonical. Then we get

$$\epsilon + \chi_i \equiv \gamma_1 + \chi_{i+1} \equiv \gamma_2 + \chi_{i+2} \equiv$$

1

74 FIBONACCI REPRESENTATIONS OF HIGHER ORDER – II [Jan. with $\gamma_1, \gamma_2, \cdots$ canonical. But this is impossible for, if so, we would have

$$(2.2) \qquad [\epsilon + \chi_i](\underline{\alpha}) \geq \chi_{i+n}(\underline{\alpha}) = \alpha^{i+n} \qquad (n = 1, 2, \cdots) .$$

This completes the proof.

Let $P \in \mathbf{V}$ be the sequence defined by the initial conditions

(2.3)
$$P_{-(N-2)} = \cdots = P_0 = 0; P_1 = 1.$$

<u>Theorem 3.</u> Let K be a positive integer. Then there is a unique canonical $\delta\in {\rm I\!D}$ such that, for all n,

(2.4)
$$P_{n}K = \sum_{i} \delta_{i} P_{i+n}$$
.

Proof. Let $\epsilon \in \mathbb{D}$ be the sequence

(2.5)
$$\epsilon_{n} = \begin{cases} K & n = 0 \\ 0 & \text{otherwise} \end{cases}$$

Then by Theorem 2 there is a unique canonical $\delta \in \mathbf{D}$ satisfying

(2.6)
$$\epsilon(v) = \delta(v), \quad v \in \mathbf{V}$$

Letting v be translates of P we get (2.4) immediately since $\varepsilon(v)$ = $v_0 K$ for any $v \in \pmb{\mathbb{V}}.$

The uniqueness of δ will follow if we can show that any $\gamma \in \mathbf{V}$ is determined by its value on translates of P. We state this as a separate theorem.

<u>Theorem 4.</u> \mathbf{V} is N-dimensional as a complex vector space. It is spanned by P, TP, ..., T^{N-1}P. Moreover, the N×N matrix

$$\Delta_{i} = \{ (T^{j}P)_{n} \} \qquad (j = 0, 1, \dots, N-1) \\ (n = 0, i+1, \dots, i+N-1)$$

has determinant

$$\left| \Delta_{i} \right| = \left((-1)^{N+1} \right)^{i+1}$$

<u>Proof</u>. The fact that V is N-dimensional is well-known, so the calculation of the determinant will complete the proof: we have

$$\Delta_{i} = \begin{pmatrix} P_{i} & P_{i+1} & \cdots & P_{i+n-1} \\ P_{i+1} & P_{i+2} & \cdots & P_{i+n} \\ \vdots & & & & \\ P_{i+n-1} & & \cdots & P_{i+2n-2} \end{pmatrix}$$

Adding the last N - 1 columns to the first, using the recurrence and interchanging columns we get

(2.7)
$$|\Delta_i| = (-1)^{N+1} |\Delta_{i+1}|$$
.

But

$$\Delta_{-(N-2)} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 & 1 \\ 0 & 0 & \cdots & 0 & 1 & 1 \\ 0 & 1 & \cdots & & & \\ 1 & 1 & \cdots & & & \end{pmatrix}$$

so that

$$|\Delta_{-(N-2)}| = (-1)^{N+1}$$
.

Hence

$$\left|\Delta_{i}\right| = \left(\left(-1\right)^{N+1}\right)^{i+1}.$$

Theorem 5. Let $v \in \mathbf{V}$. Then

<u>Proof.</u> Let $0 \le j \le N - 1$. The jth coordinate of the right side is

$$\begin{array}{rcl} v_{0}P_{j+1} &+ (v_{1} + v_{0})P_{j} &+ \cdots &+ (v_{N-1} - \cdots - v_{1} - v_{0})P_{j-(N-2)} \\ &= v_{0}(P_{j+1} - P_{j} - \cdots - P_{j-(N-2)}) \\ &+ v_{1}(P_{j} - P_{j-1} - \cdots - P_{j-(N-2)}) \\ &+ v_{k}(P_{j+1-k} - \cdots - P_{j-(N-2)}) \\ &\vdots \\ &+ v_{N-2}(P_{j-(N-2)+1} - P_{j-(N-2)}) \\ &+ v_{N-1}(P_{j-(N-2)}) \end{array} .$$

The coefficient of \boldsymbol{v}_k is non-zero only when j+1-k = 1, i.e., only when k = j. In this case it is 1.

We can generalize a theorem proved by Klarner for the Fibonacci numbers as follows.

<u>Theorem 6.</u> Let $K_1,\,K_2,\,K_3,\,\cdots,\,K_N$ be positive integers. Then there is a unique canonical δ such that

(2.10)
$$K_i = \delta(T^i P)$$
 (i = 1, 2, ..., N).

<u>Proof.</u> It will be enough to find a canonical δ satisfying

(2.11)
$$K_i = \delta \left(T^{i-(N-1)} P \right)$$
 (i = 1, 2, ..., N)

because then a translate of δ will satisfy (2.10). Let γ be one of the N roots of x^N - x^{N-1} - \cdots - x - 1 = 0, and let

$$(2.12) v = \underline{\gamma} .$$

Then by the previous theorem, if δ exists and satisfies (2.11) it must also satisfy

1972] FIBONACCI REPRESENTATIONS OF HIGHER ORDER – II

77

$$\delta(\underline{\gamma}) = K_{N} + (\gamma - 1)K_{N-1} + \dots + (\gamma^{N-1} - \gamma^{N-2} - \dots - \gamma - 1)K_{1}$$

$$(2.13) = \frac{1 + \gamma + \dots + \gamma^{N-1}}{\gamma^{N}} K_{N} + \frac{1 + \gamma + \dots + \gamma^{N-2}}{\gamma^{N-1}} + \dots + \frac{1}{\gamma} K_{1}$$

$$= K_{N}\gamma^{-N} + (K_{N} + K_{N-1})\gamma^{-(N-1)} + \dots + (K_{N} + \dots + K_{1})\gamma^{-1}.$$

Hence we should define δ to be the unique canonical form in **D** equivalent to $\beta \in \mathbf{D}$ where β is given by

(2.14)
$$\beta_{\mathbf{i}} = \begin{cases} K_{\mathbf{N}} + \cdots + K_{\mathbf{i}} & (-\mathbf{N} \le \mathbf{i} \le -1) \\ 0 & (\text{otherwise}) \end{cases}$$

Now

(2.15)
$$\beta \left(T^{i-(N-1)} P \right) = \sum_{j=1}^{N} (K_N + \cdots + K_j) P_{-j+i-(N-1)}$$
$$= \sum_{t=1}^{N} K_t \left(\sum_{j=1}^{t} P_{-j+i-(N-1)} \right) = K_i.$$

3. FURTHER APPLICATIONS OF THE MAIN THEOREM

We recall that α is the largest positive root of

$$x^{N} - x^{N-1} - \dots - x - 1 = 0$$

and

$$\underline{\alpha} = (\dots, \alpha^{-1}, 1, \alpha, \dots)$$

<u>Theorem 7.</u> Let K be any positive integer. Then there exists a unique canonical $\delta \in \mathbf{D}$ such that

$$K = \delta(\alpha) .$$

Moreover,

 $\mathbf{78}$

$$K = \delta(P).$$

Proof. Choose δ as in Theorem 3. Then

$$\delta(\alpha) = \epsilon(\alpha) = K$$
.

<u>Theorem 8.</u> A positive real number x is of the form $\delta(\underline{\alpha})$ for some canonical $\delta \in \mathbf{D}$ if and only if, for some positive k and some integers Q_1 , Q_2 , \cdots , Q_N we have

(3.1)
$$\alpha^{k}_{X} = Q_{1} + Q_{2} \alpha + \cdots + Q_{N} \alpha^{N-1}$$

Proof. Suppose first that x is of the form $\delta(\alpha)$:

(3.2)
$$x = \sum_{j=-k} \epsilon_j \alpha^j .$$

Then

$$\alpha^{k} x = \sum_{j=0} \epsilon_{j} \alpha^{j+k}$$

and powers of α higher than α^{N-1} can be successively reduced to lower powers eventually giving (3.1).

Now suppose (3.1) holds. Let $\epsilon \in \mathbb{D}$ be defined by

(3.3)
$$\boldsymbol{\epsilon}_{n} = \begin{cases} Q_{n+k+1} & -k \leq n \leq N-k-1 \\ 0 & \text{otherwise} \end{cases}$$

Then either ϵ or $-\epsilon$ is equivalent to a canonical element $\delta \in \mathbb{D}$. But

$$\epsilon(\alpha) = x > 0$$
.

Hence we must have $\epsilon \equiv \delta$.

4.

For the notation used in the remainder of the paper we refer the reader to [3].

Let $\nu_k(M)$ denote the number of numbers $n \in C_k$ such that $n \leq M$. <u>Theorem 9.</u> If $M \notin C_2$ then

(4.1)
$$\nu_2(M) = M - f(M)$$
.

More generally, if

$$\mathbf{M} \, \Subset \, \mathbf{C}_2 \, \cup \, \mathbf{C}_3 \, \cup \, \cdots \, \cup \, \mathbf{C}_r$$

then

(4.2)
$$\nu_{r}(M) = f^{r-2}(M) - f^{r-1}(M)$$
 (r = 2, 3, 4, ...).

Proof. Let

$$\mathbf{K}_{\mathbf{r}} = \{ \mathbf{K} | \mathbf{K} \notin \mathbf{C}_2 \cup \mathbf{C}_3 \cup \cdots \cup \mathbf{C}_{\mathbf{r}} \}, \quad \mathbf{r} \ge 2$$

and let K_i = W. Then clearly f^{r-1} is 1-1, onto and monotone from K_r to M. In particular,

(4.3) card {K|K \in K_r, K \leq M} = f^{r-1}(M) (r = 1, 2, ...).

Hence

$$\begin{split} \nu_{\mathbf{r}}(\mathbf{M}) &= \operatorname{card} \{ \mathbf{K} | \mathbf{K} \in \mathbf{C}_{\mathbf{r}}; \ \mathbf{K} \leq \mathbf{M} \} = \operatorname{card} \{ \mathbf{K} | \mathbf{K} \in \mathbf{K}_{\mathbf{r}-1}, \ \mathbf{K} \leq \mathbf{M} \} \\ &- \operatorname{card} \{ \mathbf{K} | \mathbf{K} \in \mathbf{F}_{\mathbf{r}}, \ \mathbf{K} \leq \mathbf{M} \} = \mathbf{f}^{\mathbf{r}-2}(\mathbf{M}) - \mathbf{f}^{\mathbf{r}-1}(\mathbf{M}). \end{split}$$

The following theorem is an immediate corollary. Theorem 10. We have

$$(4.4) \qquad \nu_2(G_n) = G_n - G_{n-1} = G_{n-2} + G_{n-3} \qquad (n \ge 3) .$$

More generally

$$(4.5) \quad \nu_{r}(G_{n}) = G_{n-r+2} - G_{n-r+1} = G_{n-r} + G_{n-r-1} \quad (n \ge r+1).$$

Theorem 11. Let k and r be fixed integers, $k \ge 1$, $r \ge 2$. Then

(4.6)
$$\nu_r(kG_n) = k(G_{n-r} + G_{n-r-1})$$

for n sufficiently large.

Proof. Using Theorem 3, we let $\delta \in \mathbf{D}$ be canonical such that

(4.7)
$$k G_n = \sum \delta_i G_{i+n}$$
, $(n = 0, 1, 2, \cdots)$.

Hence for n sufficiently large we will have

$$kG_n \notin C_2 \cup \cdots \cup C_r$$
,

 \mathbf{so}

$$\nu_{r}(kG_{n}) = f^{r-2}(kG_{n}) - f^{r-1}(kG_{n})$$

$$= \sum \delta_{i}G_{i+n-(r-2)} - \sum \delta_{i}G_{i+n-(r-1)}$$

$$= kG_{n-(r-2)} - kG_{n-(r-1)}$$

$$= k(G_{n-r} + G_{n-r-1}) .$$

The last three theorems were conjectured by Hoggatt.

REFERENCES

L. Carlitz, V. E. Hoggatt, Jr., and Richard Scoville, "Fibonacci Representations," <u>Fibonacci Quarterly</u>, Vol. 10 (1972), pp. 1-28.
 [Continued on page 94.]