SOME GENERAL RESULTS ON REPRESENTATIONS
 V. E. HOG GATT, JR., and BRIAN PETERSON
 San Jose State College, San Jose, California

 DEDICATED TO THE MEMORY OF FRANCIS DE KOVEN

 DEDICATED TO THE MEMORY OF FRANCIS DE KOVEN

 1. INTRODUCTION

 1. INTRODUCTION}

Let $P=\left\{P_{1}, P_{2}, P_{3}, \cdots\right\}$ be any sequence of distinct positive integers, then
(*)

$$
\prod_{i=1}^{\infty}\left(1+x^{P_{i}}\right)=\lim _{m \rightarrow \infty} \prod_{i=1}^{m}\left(1+x^{P_{i}}\right)=\sum_{n=0}^{\infty} R(n) x^{n}
$$

where $R(n)$ is the number of representations of the integer n as the sum of distinct elements of P. If $P_{i}=2^{i-1}(i=1,2, \ldots)$, then $R(n)=1$ for all $\mathrm{n} \geq 0$. Brown [1] has shown that if $P_{1}=1$ and

$$
P_{n+1} \leq 1+\sum_{i=1}^{n} P_{i}
$$

then $R(n) \geq 1$ for all $n \geq 0$. Here we discuss some consequences of the condition

$$
\begin{equation*}
P_{n+1} \geq 1+\sum_{i=1}^{n} P_{i} \tag{**}
\end{equation*}
$$

Let $P_{1}=1$, if equality holds for each $n \geq 1$, then $P_{i}=2^{i-1}, i \geq 1$. If for some n, the inequality holds, then $R(m)=0$ for some $m>0$, which we call an integer which is non-representable by P.

2. SOME GENERAL RESULTS

The condition (${ }^{* *}$) guarantees that $P_{i} \neq P_{j}$ for $i \neq j_{0}$. Further we may prove

Theorem 1. Every positive integer N which has a representation by the sum of distinct elements of P, then that representation is unique.

Proof. Clearly each P_{i} is its own unique representation since the sequence is strictly increasing and $P_{n+1}>P_{1}+P_{2}+P_{3}+\cdots+P_{n}$. Suppose N had two different representations

$$
N=\sum_{i=1}^{k} \alpha_{i} P_{i}=\sum_{i=1}^{m} \beta_{i} P_{i},
$$

where α_{i} and $\beta_{i}=0$ or 1 independently, with $\alpha_{k}=\beta_{m}=1$. If $m=k$, then delete $P_{m}=P_{k}$ from each side and continue to do so step-by-step until the highest order term on the left is different from the highest order term on the right. Now assume $P_{k}>P_{m}$. This is an immediate contradiction since $P_{k}>P_{1}+P_{2}+\cdots+P_{m}+\cdots+P_{k-1}$, thus both representations cannot represent N. This evidently proves Theorem 1.

3. THE NON-REPRESENTABLE INTEGERS

In certain cases, the integers which cannot be represented by sequence P can be described by a suitable closed form. See [3] and [4], however, that is not the general situation.

Definition. Let $M(n)$ be the number of positive integers less than n which cannot be represented by the sequence P.

Theorem 2. If

$$
P_{n+1} \geq 1+\sum_{i=1}^{n} P_{i}
$$

then

$$
M\left(P_{n+1}\right)=P_{n+1}-2^{n}
$$

Proof. All the sums of the 2^{n} subsets of $\left\{P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right\}$ distinct by Theorem 1. These sums are less than $P_{n+1}>P_{1}+P_{2}+\cdots$
$+P_{n}$, thus

$$
M\left(P_{n+1}\right)=\left(P_{n+1}-1\right)-\left(2^{n}-1\right)=P_{n+1}-2^{n}
$$

since $P_{n+1}-1$ is the number of positive integers $<P_{n+1}$ and the empty subset yields the non-positive sum zero. In fact it is simple to prove further.

Theorem 3. $M\left(P_{1}+P_{2}+\cdots+P_{n}\right)=M\left(P_{1}\right)+\cdots+M\left(P_{n}\right)$.
Proof. $M\left(P_{n+1}\right)=P_{n+1}-2^{n}$. Since $P_{1}+P_{2}+\cdots+P_{n}<P_{n+1}$, then all the integers between

$$
\sum_{i=1}^{n} P_{i}
$$

and P_{n+1} are nori-representable. Thus

$$
\begin{aligned}
M\left(P_{1}\right. & \left.+P_{2}+P_{3}+\cdots+P_{n}\right)=\left(P_{n+1}-2^{n}\right)-\left(P_{n+1}-\left(\sum_{i=1}^{n} P_{i}\right)-1\right) \\
& =P_{1}+P_{2}+P_{3}+\cdots+P_{n}-\left(2^{n}-1\right) \\
& =P_{1}+P_{2}+P_{3}+\cdots+P_{n}-\left(1+2^{1}+2^{2}+\cdots+2^{n-1}\right) \\
& =\left(P_{1}-2^{0}\right)+\left(P_{2}-2^{1}\right)+\left(P_{3}-2^{2}\right)+\cdots+\left(P_{n}-2^{n-1}\right) \\
& =\sum_{i=1}^{n} M\left(P_{i}\right)
\end{aligned}
$$

which concludes the proof of Theorem 3.

$$
\text { 4. } \mathrm{M}(\mathrm{~N}) \text { FOR REPRESENTABLE } \mathrm{N}
$$

The main result in this section is the statement and proof of Theorem 4. If

$$
\mathrm{N}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \alpha_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}
$$

then

$$
M(N)=N-\sum_{i=1}^{k} \alpha_{i} 2^{i-1}
$$

where each $\alpha_{i}=1$ or 0 .
Proof. Let

$$
N=\sum_{i=1}^{k} \alpha_{1} P_{i}
$$

then $P_{k} \leq N<P_{k+1}$. Thus

$$
M(N)=\left(P_{k}-2^{k-1}\right)+M\left(N-P_{k}\right)
$$

by virtue

$$
\prod_{i-1}^{k-1}\left(1+x^{P} i\right)=\sum_{n=0}^{q} R(n) X^{n}, \quad q=\sum_{i=1}^{k-1} P_{i}
$$

In forming these polynomials, the representations using only P_{1}, P_{2}, \cdots, P_{k-1} are enumerated by the $R(n)$ for $n=0$ to $n=P_{1}+P_{2}+\cdots+$ P_{k-1}. The polynomial

$$
\prod_{i=1}^{k-1}\left(1+x^{P} i\right)
$$

which has degree $n=q$, has zeros behind this N. Thus, when the factor

$$
\left(1+\mathrm{X}^{\mathrm{P}} \mathrm{k}\right)
$$

is multiplied in, the $R(n)$ between $n>P_{k}$ and $n=P_{1}+P_{2}+\cdots+P_{k}$ are precisely those from $n=0$ to $n=P_{1}+P_{2}+\cdots+P_{k-1}$ followed by zero
up to $P_{k}-1$. Thus if we proceed by induction on the number of summands, we see the theorem is true for $N=P_{k}$. Assume for all N having a representation with precisely $k-1$ summands is such that

$$
N=\sum_{j=1}^{k-1} P_{i_{j}}
$$

and

$$
M(N)=\sum_{j=1}^{k-1}\left(P_{i_{j}}-2^{i_{j}-1}\right)=N-\sum_{j=1}^{k-1} 2^{i_{j}-1}
$$

then if

$$
N=\sum_{j=1}^{k} P_{i_{j}}
$$

then

$$
\begin{aligned}
M(N) & =\left(P_{i_{k}}-2^{i_{k}-1}\right)+M\left(N-P_{i_{k}}\right) \\
& =P_{i_{k}}-2^{i_{k}-1}+\sum_{j=1}^{k-1}\left(P_{i_{j}}-2^{i_{j}-1}\right) \\
& =\sum_{i=1}^{k}\left(P_{i_{j}}-2^{i_{j}-1}\right)=N-\sum_{i=1}^{k} 2^{i_{j}-1} .
\end{aligned}
$$

which evidently proves the theorem by mathematical induction. This completes the proof of Theorem 4.

5. SOME GENERAL REMARKS

The foregoing theorems are applicable to a large class of sequences. The restriction

$$
P_{n+1} \geq 1+\sum_{i=1}^{n} P_{i}
$$

in particular, fits $u_{0}=0$ and $u_{1}=1$, while

$$
u_{n+2}=k u_{n+1}+u_{n} \quad n \geq 0, k \geq 2
$$

The Pell sequence is the special case when $k=2$.
Theorem 5. If $P_{1}=1, P_{2}=k$, and $P_{n+2}=k P_{n+1}+P_{n} n \geq 1$, then

$$
P_{m+1} \geq 1+\sum_{i=1}^{m} P_{i}
$$

It is true that, if $S_{n}=P_{1}+P_{2}+\cdots+P_{n}$, then

$$
P_{n+2}+P_{n+1}-P_{2}-P_{1}+S_{n}=k\left(P_{n+1}-P_{1}+S_{n}\right)+S_{n}
$$

From $P_{n+2}-k P_{n+1}=P_{n}$ and $P_{2}-k P_{1}=0$, we assert

$$
P_{n+1}=k S_{n}-P_{n}+P_{1}=1+S_{n}+(k-2) P_{n}+k S_{n-1}
$$

Since $k \geq 2$, the proof would be complete by induction provided it holds for $\mathrm{n}=1$, which one sees as follows:

$$
P_{2}=k \geq 1+\sum_{i=1}^{1} P_{1}=2
$$

This completes the proof of Theorem 5.

Another large family of sequences is given by $P_{0}=1, P_{1}=1$ and $P_{n+2}=P_{n+1}+k P_{n}$ for $n \geq 0, k \geq 2$. It is not difficult to establish

Theorem 6. If $\mathrm{P}_{1}=1, \mathrm{P}_{2}=\mathrm{k}+1$, and, for $\mathrm{n} \geq 0$,

$$
P_{n+2}=P_{n+1}+k P_{n}
$$

then

$$
P_{n+1} \geq 1+\sum_{i=1}^{n} P_{i}
$$

Proof. We proceed by induction. $P_{1}=1$ and $P_{2}=k+1$, thus $P_{2} \geq 1$ +1 for $k \geq 2$. Now assume

$$
P_{m} \geq 1+\sum_{i=1}^{m-1} P_{i}
$$

for $m=2,3, \cdots, n$, then

$$
\begin{aligned}
P_{n+1} & =P_{n}+k P_{n-1}=P_{n}+P_{n-1}+(k-1) P_{n-1} \\
& \geq P_{n}+P_{n-1}+\left(1+\sum_{i=1}^{n-2} P_{i}\right)+(k-2) P_{n-1} \\
& \geq 1+\sum_{i=1}^{n} P_{i}+(k-2) P_{n-1}
\end{aligned}
$$

Clearly

$$
P_{n+1} \geq 1+\sum_{i=1}^{n} P_{i}
$$

for $k \geq 2, n \geq 1$. This concludes the proof of Theorem 6 .

We add a couple of more sequences to show we haven't captured them all. Let $P_{n}=F_{2 n}$. $\left(F_{n}\right.$ is the $n^{\text {th }}$ Fibonacci number. $)$ Then, since

$$
\mathrm{F}_{2}+\mathrm{F}_{4}+\cdots+\mathrm{F}_{2 \mathrm{n}}+1=\mathrm{F}_{2 \mathrm{n}+1}<\mathrm{F}_{2 \mathrm{n}+2}
$$

so that here, too,

$$
P_{n+1} \geq 1+\sum_{i=1}^{n} P_{i}
$$

So does $P_{n}=F_{2 n-1}, \quad n \geq 1$.

6. A FINAL CONJECTURE

Conjecture. Let H_{1} and H_{2} be distinct positive integers, sequence H, generated by $H_{n+2}=H_{n+1}+H_{n} \quad n \geq 1$, then condition (*) yields $R(n)$ such that $R\left(H_{n}\right)$ is independent of the choice of H_{1} and H_{2}.

REFERENCES

1. John L. Brown, Jr., "Note on Complete Sequences of Integers," The American Mathematical Monthly, Vol. 67 (1960), pp. 557-560.
2. V. E. Hoggatt, Jr., "Generalized Zeckendorf Theorem," Fibonacci Quarterly, Vol. 10 (1972), pp. 89-93.
3. L. Carlitz, V. E. Hoggatt, Jr., and Richard Scoville, "Fibonacci Representations," Fibonacci Quarterly, Vol. 10 (1972), pp 1 - 28.
4. L. Carlitz, V. E. Hoggatt, Jr., and Richard Scoville, "Lucas Representations," Fibonacci Quarterly, Vol. 10 (1972), pp. 29 - 42.
