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1. INTRODUCTION 

The Zeckendorf theorem states that every positive integer can be 
uniquely represented as the sum of distinct Fibonacci numbers if no two con-
secutive Fibonacci numbers are used in any given sum. 

D. E. Daykin [1] proved the converse of the Zeckendorf theorem. 
Keller [2] generalized the Zeckendorf theorem and proved a restricted con-
verse for monotone increasing integer sequences. Hence we generalize the 
Zeckendorf theorem in a different way and also get a restricted converse. 
This leaves two open questions as to validity of the unrestricted converse 
theorems. 

2. THE GENERALIZED ZECKENDORF THEOREM 

Theorem 1. Let U0 = 05 Ut = 1, and U n + 2 = kU n + 1 + U Q (n > 0, 
k > 1), then every positive integer N9 has a unique representation in the 
form 

N = €iUi + €2U2 + • • • +€ U , i i i i n n 

where 

€4 = 0, 1, 2, 3, •• • , or k - 1 

et = 0, l s 2S 3, • • • , or k 

If €. = k, then e. - = 0 
I i - l 

i ^ 2 

First we prove two useful lemmas. 
Lemma 1. (i) U2 n = k ( U ^ ^ + - • • + U3 + U4) 

( i i ) U2.n+1 = k (U2n + ' " + U*} + * 
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Proof of the Lemma. (The proof will proceed by induction.) 

Ui = 1, U2 = k, and U3 = k2 + 1 

from r e c u r r e n c e . 

( i ) U2n+2 = k U 2 n + l + U 2a 

= k{ku2n + ku2n_2 + • •. + ku2 + i} + { k u ^ + ku2 n_2 + • • • + ku3 + ku t } 

= tf^n^n-l* + ( k U 2n-2 + U2n-2> + • • • + <kU2 + * i ) + 1} 

= k { U 2 n + l + U 2 a - l + - - - + U, + l } 
= k^U2n+l + U 2n -1 + • • • + u 3 + U1J" > s i n c e u i = 1- E n d o f P r o o f o f G)-

( i i ) U 2n + 3 = k U 2n + 2 + U 2n + 1 
= k { k U 2 n + 1 + • • • + kU3 + k U j + k { U 2 n + • • • + U 2 )} + 1 

= k { ( k U 2 n + 1 + U 2 n ) + (kU 2 n _ 1 + U 2 n _ 2 ) + • • • + (kU3 + U 2 )} + 1 + k2Ut 

= k { U 2 n + 2 + U2n + - - - + U4 + k U j + 1 

= k { U 2 n + 2 + U 2 Q + ••• + U 4 + U2} + 1, since Ut and U2 = k. 

Lemma 2. 

^ n - 1 = k ( U 2 n - l + - ' - + U 3 ) + ( k " 1 ) U i 

^ n + l " 1 = k ( U 2 n + U 2 n - 2 + - - - + U 2 > 

Proof of Lemma 2. Both p a r t s follow eas i ly from L e m m a 1. We need 

to know the maximum admiss ib le sum using U^, U2, • " ' , U m , subject to 

the coefficient cons t ra in t s of Theorem 1. 

V - 1 = k < U 2n- l + U 2 n - 3 + " - + U l ) - 1 

= k ( U 2 n - l + U 2 n - 3 + - - - + U»> + ( k " 1 ) U * ' 

Thus the maximum admissible sum using 

u t , u2, us, •••, u 2 a _ 1 
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is U 2 n - 1. Now, 

U 2 n + 1 - X = k ( U 2 n + U 2n -2 + " " + U* + U2) • 

Thus the maximum admiss ib le sum using 

Ui, U2J U3, • • - , U 2 Q 

is u
2 n + 1 - 1, s ince U2 has coefficient ks U4 can have only coefficient 

z e r o . 

Proof of the Theorem. The proof will proceed by induction. V e r i f i c a -

tion for s = 1, m < U2 = k impl ies n = n.• Uj. Assume eve ry in teger 

n < U - has a unique admiss ib le represen ta t ion using only Ul s U2, U3, 

U . The max imum such represen ta t ion has sum U - - 1 by Lemma 2. 

Thus U - is i ts own unique represen ta t ion . F o r the r ep resen ta t ions for 

numbers 

j U s + l " n? * ( j + 1 ) U s + l X " 3 - k " 2 

we s imply add j U - to the r ep resen ta t ions for 1 ^ n ^ U - to get a 

unique represen ta t ion . The coefficient of U can be k s ince the coefficient 

of U , - "̂  k. In the in terval 
s+1 

k U s + 1 "= n " " U s + 2 • 

the r ep resen ta t ions cannot contain U thus the g r ea t e s t admiss ib le r e p r e -
s 

sentat ion uses Ui, U2, • • • , U 1 whose maximal admiss ib le sum is U - 1. 
s—i s 

Thus we add to kU - a unique represen ta t ion for n ^ U - 1. Thus we 

have now covered the in terval U - < n < U + 2 and fu r the rmore each such 

const ructed represen ta t ion is UNIQUE. The proof of the Theorem is c o m -

plete by mathemat ica l induction. END OF PROOF. 
3. THE RESTRICTED CONVERSE 

TO THE GENERALIZED ZECKENDORF THEOREM 
r 1°° Definition: F o r fixed in teger K ^ 1, a sequence {V } of posi t ive 

in tegers will be called a Zeckendorf K - b a s i s (or briefly a K-bas is ) if every 

posi t ive in teger n has a unique rep resen ta t ion in the form 
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m 

<« - = E e i v i • 
i=l 

where the coefficients €. satisfy constraints 

i = 0, 1, • - . , K - 1 

(2) \ 6 . = 0, 1, ••• , K for i ^ 2 

e. - = 0 if e. = K for i ^ 2 l - l i 

A representation in form (1) with coefficients satisfying (2) will be called 
admissible. 

Lemma 3. If {V } is a K-basis with K ^ 2, then V. f V for j 
L n J i j ' n J 

f n, 1 ̂  j , n < 0 ° . 
Proof. Obvious from uniqueness requirement. (For K = 1, V* = V ?̂ 

but Vi has a zero coefficient in any admissible representation.) 
r i°° 

Lemma 4. If {V } is a non-decreasing K-basis, then V for n ^ 2 
is characterized as the smallest positive integer not representable inadmis-
sible form using only Vi, V2, " "" , V - . 

Proof. Let N = smallest positive integer not capable of being rep-
resented in admissible form using only Vl5 V2, • • * , V _-. If N > V , 
then V would have two admissible representations, thereby contradicting 
uniqueness. On the other hand, if N < V , then N itself would have no M n n n 
admissible representation (recalling {V } is non-decreasing). 

r 1°° n 

Theorem 2. Let {V } be a non-decreasing K-basis with K ^ 1. 
Then defining V0 = 0, we have 

(3) V ,_ = KV x 1 + V for t i > 0, K > 1 . 
n+2 n+1 n 

Proof. Since K = 1 corresponds to Zeckendorf's theorem, we may 
confine our attention for K ^ 2. Then {V } is strictly increasing by 
Lemma 3. Clearly V± = 1, and Lemma 4 in conjunction with the coefficient 
constraints (2) implies V2 = K [since e{V^ can represent only the integers 
1, 2, . . - , K - I j . 



1972] GENERALIZED ZECKENDOEF THEOREM 93 

For fixed K ̂  2, let {U } be the sequence defined by U0 = 0, Uj. 
= 1 and Un + 2 = KUn + 1 + U Q for n ̂  0. Then V0 = U05 Vt = U1? V2 = U2. 
Now, assume as an induction hypothesis that Vj = Uj for i = 1, 2, ° ° • , n, 
where n ̂  2. We wish to show V - = U - . Contained in the proof of the 
generalized Zeckendorf theorem is the fact that the smallest integer not rep-
resentable by an admissible combination of Ui, U2, e ° • , Un is U -. Since 
U. = V. for i = 1, 8 ' • , n, Lemma 2 implies V ,- = U ,- and the theorem 

i i 9 ^ n+1 n+1 
is established. 

I wish to thank John L. Brown, J r . , for the details of the restricted 
converse theorem. 
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FIBONACCI NOTE SERVICE 
The Fibonacci Quarterly is offering a service in which it will be p o s -

sible for its readers to secure background notes for articles. This will apply 
to the following: 

(1) Short abstracts of extensive results , derivations, and numerical 
data. 

(2) Brief articles summarizing a large amount of research. 
(3) Articles of standard size for which additional background material 

may be obtained. 
Articles in the Quarterly for which this note service is available will 

indicate the fact together with the number of pages in question,, Requests for 
these notes should be made to: 

Brother Alfred Brousseau 
St. Maryfs College 
Moraga, Calif. 94575 

The notes will be Xeroxed. 
The price for this service is four cents a page (including postage, ma-

terials and labor.) 

FIBONACCI NEWS 
The title of our new number tables book, to come out soon, i s : 

FIBONACCI AND RELATED NUMBER THEORETIC TABLES. 1972, 
Reference tables related to the sequence of article? on representations 

and their page numbers are shown on page 112. 


